Smith Adam B.

No Thumbnail Available
Last Name
Smith
First Name
Adam B.
ORCID

Search Results

Now showing 1 - 5 of 5
  • Article
    Transmission beam pattern and dynamics of a spinner dolphin (Stenella longirostris)
    (Acoustical Society of America, 2019-06-19) Smith, Adam B. ; Pacini, Aude F. ; Nachtigall, Paul E. ; Laule, Gail E. ; Aragones, Lemnuel V. ; Magno, Carlo ; Suarez, Leo J. A.
    Toothed whales possess a sophisticated biosonar system by which ultrasonic clicks are projected in a highly directional transmission beam. Beam directivity is an important biosonar characteristic that reduces acoustic clutter and increases the acoustic detection range. This study measured click characteristics and the transmission beam pattern from a small odontocete, the spinner dolphin (Stenella longirostis). A formerly stranded individual was rehabilitated and trained to station underwater in front of a 16-element hydrophone array. On-axis clicks showed a mean duration of 20.1 μs, with mean peak and centroid frequencies of 58 and 64 kHz [standard deviation (s.d.) ±30 and ±12 kHz], respectively. Clicks were projected in an oval, vertically compressed beam, with mean vertical and horizontal beamwidths of 14.5° (s.d. ± 3.9) and 16.3° (s.d. ± 4.6), respectively. Directivity indices ranged from 14.9 to 27.4 dB, with a mean of 21.7 dB, although this likely represents a broader beam than what is normally produced by wild individuals. A click subset with characteristics more similar to those described for wild individuals exhibited a mean directivity index of 23.3 dB. Although one of the broadest transmission beams described for a dolphin, it is similar to other small bodied odontocetes.
  • Preprint
    Investigation on acoustic reception pathways in finless porpoise (Neophocaena asiaorientalis sunameri) with insight into an alternative pathway
    ( 2018-10) Song, Zhongchang ; Zhang, Yu ; Mooney, T. Aran ; Wang, Xianyan ; Smith, Adam B. ; Xu, Xiaohui
    Sound transmission and reception are both vital components to odontocete echolocation and daily life. Here, we combine computed tomography (CT) scanning and Finite Element Modeling to investigate the acoustic propagation of finless porpoise (Neophocaena asiaorientalis sunameri) echolocation pulses. The CT scanning and FEM wave propagation model results support the well-accepted jaw-hearing pathway hypothesis and suggest an additional alternative auditory pathway composed of structures, mandible (lower jaw) and internal mandibular fat, with different acoustic impedances, which may also conduct sounds to the ear complexes. The internal mandibular fat is attached to the ear complex and encased by the mandibles laterally and anteriorly. The simulations show signals in this pathway initially propagate along the solid mandibles and are transmitted to the acoustically coupled soft tissue of the internal mandibular fat which conducts the stimuli posteriorly as it eventually arrives at ear complexes. While supporting traditional theories, this new bone-tissue-conduction pathway might be meaningful to understand the hearing and sound reception processes in a wide variety of odontocetes species.
  • Article
    A field study of auditory sensitivity of the Atlantic puffin, Fratercula Arctica
    (The Company of Biologists, 2020-06-19) Mooney, T. Aran ; Smith, Adam B. ; Larsen, Ole Naesbye ; Hansen, Kirstin Anderson ; Rasmussen, Marianne H.
    Hearing is vital for birds as they rely on acoustic communication with parents, mates, chicks, and conspecifics. Amphibious seabirds face many ecological pressures, having to sense cues in air and underwater. Natural noise conditions have helped shape this sensory modality but anthropogenic noise is increasingly impacting seabirds. Surprisingly little is known about their hearing, despite their imperiled status. Understanding sound sensitivity is vital when we seek to manage manmade noise impacts. We measured the auditory sensitivity of nine wild Atlantic puffins, Fratercula arctica, in a capture-and-release setting in an effort to define their audiogram and compare these data to the hearing of other birds and natural rookery noise. Auditory sensitivity was tested using auditory evoked potential (AEP) methods. Responses were detected from 0.5 to 6 kHz. Mean thresholds were below 40 dB re 20 µPa from 0.75 to 3 kHz indicating that these were the most sensitive auditory frequencies, similar to other seabirds. Thresholds in the ‘middle’ frequency range 1-2.5 kHz were often down to 10-20 dB re 20 µPa. Lowest thresholds were typically at 2.5 kHz. These are the first in-air auditory sensitivity data from multiple wild-caught individuals of a deep-diving Alcid seabird. The audiogram was comparable to other birds of similar size, thereby indicating that puffins have fully functioning aerial hearing despite the constraints of their deep-diving, amphibious lifestyles. There was some variation in thresholds, yet animals generally had sensitive ears suggesting aerial hearing is an important sensory modality for this taxon.
  • Article
    Aerial hearing thresholds and ecoacoustics of a threatened pursuit-diving seabird, the marbled murrelet Brachyramphus marmoratus
    (Inter-Research Science Publisher, 2023-03-30) Smith, Adam B. ; Kissling, Michelle ; Capuano, Alyssa M. ; Lewis, Stephen B. ; Mooney, T. Aran
    As humans increasingly utilize sensitive coastal areas, diving seabirds like the marbled murrelet Brachyramphus marmoratus face a unique combination of exposure to pervasive anthropogenic sound and acoustically mediated disturbances in terrestrial and marine environments. Despite its threatened status, the sound sensitivities and sensory ecology of this species are unknown, limiting any predictions of the frequencies or sound levels that may induce acoustic impacts. In this study, we measured electrophysiological aerial hearing thresholds for 10 wild individuals captured, sedated, examined inside a field-deployed anechoic chamber and subsequently released. Auditory responses were detected across a 0.5 to 6 kHz frequency range. The median auditory threshold was lowest at 2 kHz (33 dB), while hearing was generally sensitive between 0.75 and 3.8 kHz. B. marmoratus thresholds were elevated compared to other studied alcid species. In-air sensitivities were used to provide an initial prediction of underwater hearing thresholds. To further explore the auditory sensory ecology of this solitary-nesting species, hearing data were also compared to short-term recordings (5 d) of the aerial soundscape of a marbled murrelet nesting habitat. The soundscape contained both abiotic and biotic sounds that contributed to broadband sound levels of 46-55 dB re: 20 µPa rms (0.2-10 kHz). This comparatively quiet habitat enabled relatively frequent detection of anthropogenic sounds within the soundscape. Energy from this acoustic pollution consistently overlapped marbled murrelet sound sensitivities, indicating that the species is susceptible to disturbance from a range of noise types.
  • Article
    Sensitive aerial hearing within a noisy nesting soundscape in a deep-diving seabird, the common murre Uria aalge
    (Inter-Research Science Publisher, 2023-07-13) Smith, Adam B. ; Fischer-McMorrow, Iris ; Kolbeinsson, Yann ; Rasmussen, Marianne H. ; Shero, Michelle R. ; McElwaine, Jim N. ; Jones, Owen R. ; Mooney, T. Aran
    Diving seabirds face a combination of sound exposure in marine and terrestrial environments due to increasing human encroachment on coastal ecosystems. Yet the sound-sensitivity and sensory ecology of this threatened group of animals is largely unknown, complicating effective management and conservation. Here, we characterize aspects of the acoustic ecology of the common murre Uria aalge, one of the deepest diving alcid seabirds. Electrophysiological aerial hearing thresholds were measured for 12 wild, nesting individuals and compared to conspecific vocalizations and short-term aerial soundscape dynamics of their cliff nesting habitat. Auditory responses were measured from 0.5 to 6 kHz, with a lowest mean threshold of 30 dB at 2 kHz and generally sensitive hearing from 1 to 3.5 kHz. The short-term murre nesting soundscape contained biotic sounds from con- and heterospecific avifauna; broadband sounds levels of 56-69 dB re: 20 µPa rms (0.1-10 kHz) were associated with both diel and tidal-cycle factors. Five murre vocalization types showed dominant spectral emphasis at or below the region of best hearing. Common murre hearing appears to be less sensitive than a related alcid, the Atlantic puffin Fratercula arctica, but more sensitive than other non-alcid diving birds described to date, suggesting that adaptations for deep diving have not caused a loss of the species’ hearing ability above water. Overall, frequencies of common murre hearing and vocalization overlap with many anthropogenic noise sources, indicating that the species is susceptible to disturbance from a range of noise types.