Ascani
Francois
Ascani
Francois
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleEvidence for the maintenance of slowly varying equatorial currents by intraseasonal variability(John Wiley & Sons, 2018-02-09) Greatbatch, Richard J. ; Claus, Martin ; Brandt, Peter ; Matthießen, Jan-Dirk ; Tuchen, Franz Philip ; Ascani, Francois ; Dengler, Marcus ; Toole, John M. ; Roth, Christina ; Farrar, J. ThomasRecent evidence from mooring data in the equatorial Atlantic reveals that semiannual and longer time scale ocean current variability is close to being resonant with equatorial basin modes. Here we show that intraseasonal variability, with time scales of tens of days, provides the energy to maintain these resonant basin modes against dissipation. The mechanism is analogous to that by which storm systems in the atmosphere act to maintain the atmospheric jet stream. We demonstrate the mechanism using an idealized model setup that exhibits equatorial deep jets. The results are supported by direct analysis of available mooring data from the equatorial Atlantic Ocean covering a depth range of several thousand meters. The analysis of the mooring data suggests that the same mechanism also helps maintain the seasonal variability.
-
ArticleShort-term variability in euphotic zone biogeochemistry and primary productivity at Station ALOHA : a case study of summer 2012(John Wiley & Sons, 2015-08-13) Wilson, Samuel T. ; Barone, Benedetto ; Ascani, Francois ; Bidigare, Robert R. ; Church, Matthew J. ; del Valle, Daniela A. ; Dyhrman, Sonya T. ; Ferroon, Sara ; Fitzsimmons, Jessica N. ; Juranek, Laurie W. ; Kolber, Zbigniew S. ; Letelier, Ricardo M. ; Martinez-Garcia, Sandra ; Nicholson, David P. ; Richards, Kelvin J. ; Rii, Yoshimi M. ; Rouco, Monica ; Viviani, Donn A. ; White, Angelicque E. ; Zehr, Jonathan P. ; Karl, David M.Time-series observations are critical to understand the structure, function, and dynamics of marine ecosystems. The Hawaii Ocean Time-series program has maintained near-monthly sampling at Station ALOHA (22°45′N, 158°00′W) in the oligotrophic North Pacific Subtropical Gyre (NPSG) since 1988 and has identified ecosystem variability over seasonal to interannual timescales. To further extend the temporal resolution of these near-monthly time-series observations, an extensive field campaign was conducted during July–September 2012 at Station ALOHA with near-daily sampling of upper water-column biogeochemistry, phytoplankton abundance, and activity. The resulting data set provided biogeochemical measurements at high temporal resolution and documents two important events at Station ALOHA: (1) a prolonged period of low productivity when net community production in the mixed layer shifted to a net heterotrophic state and (2) detection of a distinct sea-surface salinity minimum feature which was prominent in the upper water column (0–50 m) for a period of approximately 30 days. The shipboard observations during July–September 2012 were supplemented with in situ measurements provided by Seagliders, profiling floats, and remote satellite observations that together revealed the extent of the low productivity and the sea-surface salinity minimum feature in the NPSG.