Thomas Elaina

No Thumbnail Available
Last Name
Thomas
First Name
Elaina
ORCID
0000-0002-6657-8302

Search Results

Now showing 1 - 3 of 3
  • Article
    Metabolic strategies shared by basement residents of the lost city hydrothermal field
    (American Society for Microbiology, 2022-09-13) Brazelton, William J. ; McGonigle, Julia M. ; Motamedi, Shahrzad ; Pendleton, H. Lizethe ; Twing, Katrina I. ; Miller, Briggs C. ; Lowe, William J. ; Hoffman, Alessandrina M. ; Prator, Cecilia A. ; Chadwick, Grayson L. ; Anderson, Rika E. ; Thomas, Elaina ; Butterfield, David A. ; Aquino, Karmina A. ; Fruh-Green, Gretchen L. ; Schrenk, Matthew O. ; Lang, Susan Q.
    Alkaline fluids venting from chimneys of the Lost City hydrothermal field flow from a potentially vast microbial habitat within the seafloor where energy and organic molecules are released by chemical reactions within rocks uplifted from Earth’s mantle. In this study, we investigated hydrothermal fluids venting from Lost City chimneys as windows into subseafloor environments where the products of geochemical reactions, such as molecular hydrogen (H2), formate, and methane, may be the only available sources of energy for biological activity. Our deep sequencing of metagenomes and metatranscriptomes from these hydrothermal fluids revealed a few key species of archaea and bacteria that are likely to play critical roles in the subseafloor microbial ecosystem. We identified a population of Thermodesulfovibrionales (belonging to phylum Nitrospirota) as a prevalent sulfate-reducing bacterium that may be responsible for much of the consumption of H2 and sulfate in Lost City fluids. Metagenome-assembled genomes (MAGs) classified as Methanosarcinaceae and Candidatus Bipolaricaulota were also recovered from venting fluids and represent potential methanogenic and acetogenic members of the subseafloor ecosystem. These genomes share novel hydrogenases and formate dehydrogenase-like sequences that may be unique to hydrothermal environments where H2 and formate are much more abundant than carbon dioxide. The results of this study include multiple examples of metabolic strategies that appear to be advantageous in hydrothermal and subsurface alkaline environments where energy and carbon are provided by geochemical reactions.
  • Article
    Diverse viruses in deep-sea hydrothermal vent fluids have restricted dispersal across ocean basins
    (American Society for Microbiology, 2021-06-22) Thomas, Elaina ; Anderson, Rika E. ; Li, Viola ; Rogan, L. Jenni ; Huber, Julie A.
    In the ocean, viruses impact microbial mortality, regulate biogeochemical cycling, and alter the metabolic potential of microbial lineages. At deep-sea hydrothermal vents, abundant viruses infect a wide range of hosts among the archaea and bacteria that inhabit these dynamic habitats. However, little is known about viral diversity, host range, and biogeography across different vent ecosystems, which has important implications for how viruses manipulate microbial function and evolution. Here, we examined viral diversity, viral and host distribution, and virus-host interactions in microbial metagenomes generated from venting fluids from several vent sites within three different geochemically and geographically distinct hydrothermal systems: Piccard and Von Damm vent fields at the Mid-Cayman Rise in the Caribbean Sea, and at several vent sites within Axial Seamount in the Pacific Ocean. Analysis of viral sequences and clustered regularly interspaced short palindromic repeat (CRISPR) spacers revealed highly diverse viral assemblages and evidence of active infection. Network analysis revealed that viral host range was relatively narrow, with very few viruses infecting multiple microbial lineages. Viruses were largely endemic to individual vent sites, indicating restricted dispersal, and in some cases, viral assemblages persisted over time. Thus, we show that hydrothermal vent fluids are home to novel, diverse viral assemblages that are highly localized to specific regions and taxa.
  • Article
    Chitin utilization by marine picocyanobacteria and the evolution of a planktonic lifestyle
    (National Academy of Sciences, 2023-05-16) Capovilla, Giovanna ; Braakman, Rogier ; Fournier, Gregory P. ; Hackl, Thomas ; Schwartzman, Julia ; Lu, Xinda ; Yelton, Alexis ; Longnecker, Krista ; Soule, Melissa C. Kido ; Thomas, Elaina ; Swarr, Gretchen ; Mongera, Alessandro ; Payette, Jack G. ; Castro, Kurt G. ; Waldbauer, Jacob R. ; Kujawinski, Elizabeth B. ; Cordero, Otto X. ; Chisholm, Sallie W.
    Marine picocyanobacteria Prochlorococcus and Synechococcus, the most abundant photosynthetic cells in the oceans, are generally thought to have a primarily single-celled and free-living lifestyle. However, while studying the ability of picocyanobacteria to supplement photosynthetic carbon fixation with the use of exogenous organic carbon, we found the widespread occurrence of genes for breaking down chitin, an abundant source of organic carbon that exists primarily as particles. We show that cells that encode a chitin degradation pathway display chitin degradation activity, attach to chitin particles, and show enhanced growth under low light conditions when exposed to chitosan, a partially deacetylated soluble form of chitin. Marine chitin is largely derived from arthropods, which underwent major diversifications 520 to 535 Mya, close to when marine picocyanobacteria are inferred to have appeared in the ocean. Phylogenetic analyses confirm that the chitin utilization trait was acquired at the root of marine picocyanobacteria. Together this leads us to postulate that attachment to chitin particles allowed benthic cyanobacteria to emulate their mat-based lifestyle in the water column, initiating their expansion into the open ocean, seeding the rise of modern marine ecosystems. Subsequently, transitioning to a constitutive planktonic life without chitin associations led to cellular and genomic streamlining along a major early branch within Prochlorococcus. Our work highlights how the emergence of associations between organisms from different trophic levels, and their coevolution, creates opportunities for colonizing new environments. In this view, the rise of ecological complexity and the expansion of the biosphere are deeply intertwined processes.