Collins
Scott L.
Collins
Scott L.
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleLong-term ecological research in a human-dominated world(American Institute of Biological Sciences, 2012-04) Robertson, G. Philip ; Collins, Scott L. ; Foster, David R. ; Brokaw, Nicholas ; Ducklow, Hugh W. ; Gragson, Ted L. ; Gries, Corinna ; Hamilton, Stephen K. ; McGuire, A. David ; Moore, John C. ; Stanley, Emily H. ; Waide, Robert B. ; Williams, Mark W.The US Long Term Ecological Research (LTER) Network enters its fourth decade with a distinguished record of achievement in ecological science. The value of long-term observations and experiments has never been more important for testing ecological theory and for addressing today's most difficult environmental challenges. The network's potential for tackling emergent continent-scale questions such as cryosphere loss and landscape change is becoming increasingly apparent on the basis of a capacity to combine long-term observations and experimental results with new observatory-based measurements, to study socioecological systems, to advance the use of environmental cyberinfrastructure, to promote environmental science literacy, and to engage with decisionmakers in framing major directions for research. The long-term context of network science, from understanding the past to forecasting the future, provides a valuable perspective for helping to solve many of the crucial environmental problems facing society today.
-
ArticleLooking deeper into the soil : biophysical controls and seasonal lags of soil CO2 production and efflux(Ecological Society of America, 2010-09) Vargas, Rodrigo ; Baldocchi, Dennis D. ; Allen, Michael F. ; Bahn, Michael ; Black, T. Andrew ; Collins, Scott L. ; Yuste, Jorge Curiel ; Hirano, Takashi ; Jassal, Rachhpal S. ; Pumpanen, Jukka ; Tang, JianwuWe seek to understand how biophysical factors such as soil temperature (Ts), soil moisture (θ), and gross primary production (GPP) influence CO2 fluxes across terrestrial ecosystems. Recent advancements in automated measurements and remote-sensing approaches have provided time series in which lags and relationships among variables can be explored. The purpose of this study is to present new applications of continuous measurements of soil CO2 efflux (F0) and soil CO2 concentrations measurements. Here we explore how variation in Ts, θ, and GPP (derived from NASA's moderate-resolution imaging spectroradiometer [MODIS]) influence F0 and soil CO2 production (Ps). We focused on seasonal variation and used continuous measurements at a daily timescale across four vegetation types at 13 study sites to quantify: (1) differences in seasonal lags between soil CO2 fluxes and Ts, θ, and GPP and (2) interactions and relationships between CO2 fluxes with Ts, θ, and GPP. Mean annual Ts did not explain annual F0 and Ps among vegetation types, but GPP explained 73% and 30% of the variation, respectively. We found evidence that lags between soil CO2 fluxes and Ts or GPP provide insights into the role of plant phenology and information relevant about possible timing of controls of autotrophic and heterotrophic processes. The influences of biophysical factors that regulate daily F0 and Ps are different among vegetation types, but GPP is a dominant variable for explaining soil CO2 fluxes. The emergence of long-term automated soil CO2 flux measurement networks provides a unique opportunity for extended investigations into F0 and Ps processes in the near future.
-
ArticlePast, present, and future roles of long-term experiments in the LTER Network(American Institute of Biological Sciences, 2012-04) Knapp, Alan K. ; Smith, Melinda D. ; Hobbie, Sarah E. ; Collins, Scott L. ; Fahey, Timothy J. ; Hansen, Gretchen J. A. ; Landis, Douglas A. ; La Pierre, Kimberly J. ; Melillo, Jerry M. ; Seastedt, Timothy R. ; Shaver, Gaius R. ; Webster, Jackson R.The US National Science Foundation—funded Long Term Ecological Research (LTER) Network supports a large (around 240) and diverse portfolio of long-term ecological experiments. Collectively, these long-term experiments have (a) provided unique insights into ecological patterns and processes, although such insight often became apparent only after many years of study; (b) influenced management and policy decisions; and (c) evolved into research platforms supporting studies and involving investigators who were not part of the original design. Furthermore, this suite of long-term experiments addresses, at the site level, all of the US National Research Council's Grand Challenges in Environmental Sciences. Despite these contributions, we argue that the scale and scope of global environmental change requires a more-coordinated multisite approach to long-term experiments. Ideally, such an approach would include a network of spatially extensive multifactor experiments, designed in collaboration with ecological modelers that would build on and extend the unique context provided by the LTER Network.