Bohlen Walter Franklin

No Thumbnail Available
Last Name
Bohlen
First Name
Walter Franklin
ORCID

Search Results

Now showing 1 - 3 of 3
  • Preprint
    Estimates of new and total productivity in central Long Island Sound from in situ measurements of nitrate and dissolved oxygen
    ( 2013-01) Collins, James R. ; Raymond, Peter A. ; Bohlen, Walter Franklin ; Howard-Strobel, Mary M.
    Biogeochemical cycles in estuaries are regulated by a diverse set of physical and biological variables that operate over a variety of time scales. Using in situ optical sensors, we conducted a high-frequency time-series study of several biogeochemical parameters at a mooring in central Long Island Sound from May to August 2010. During this period, we documented well-defined diel cycles in nitrate concentration that were correlated to dissolved oxygen, wind stress, tidal mixing, and irradiance. By filtering the data to separate the nitrate time series into various signal components, we estimated the amount of variation that could be ascribed to each process. Primary production and surface wind stress explained 59% and 19%, respectively, of the variation in nitrate concentrations. Less frequent physical forcings, including large-magnitude wind events and spring tides, served to decouple the relationship between oxygen, nitrate, and sunlight on about one-quarter of study days. Daytime nitrate minima and dissolved oxygen maxima occurred nearly simultaneously on the majority (> 80%) of days during the study period; both were strongly correlated with the daily peak in irradiance. Nighttime nitrate maxima reflected a pattern in which surface-layer stocks were depleted each afternoon and recharged the following night. Changes in nitrate concentrations were used to generate daily estimates of new primary production (182 ± 37 mg C m-2 d-1) and the f-ratio (0.25), i.e., the ratio of production based on nitrate to total production. These estimates, the first of their kind in Long Island Sound, were compared to values of community respiration, primary productivity, and net ecosystem metabolism, which were derived from in situ measurements of oxygen concentration. Daily averages of the three metabolic parameters were 1660 ± 431, 2080 ± 419, and 429 ± 203 mg C m-2 d-1, respectively. While the system remained weakly autotrophic over the duration of the study period, we observed very large day-to-day differences in the f-ratio and in the various metabolic parameters.
  • Dataset
    Auxiliary material for "Estimates of new and total productivity in central Long Island Sound from in situ measurements of nitrate and dissolved oxygen"
    ( 2013) Collins, James R. ; Raymond, Peter A. ; Bohlen, Walter Franklin ; Howard-Strobel, Mary M.
    Biogeochemical cycles in estuaries are regulated by a diverse set of physical and biological variables that operate over a variety of time scales. Using in situ optical sensors, we conducted a high-frequency time-series study of several biogeochemical parameters at a mooring in central Long Island Sound from May to August 2010. During this period, we documented well-defined diel cycles in nitrate concentration that were correlated to dissolved oxygen, wind stress, tidal mixing, and irradiance. By filtering the data to separate the nitrate time series into various signal components, we estimated the amount of variation that could be ascribed to each process. Primary production and surface wind stress explained 59% and 19%, respectively, of the variation in nitrate concentrations. Less frequent physical forcings, including large-magnitude wind events and spring tides, served to decouple the relationship between oxygen, nitrate, and sunlight on about one-quarter of study days. Daytime nitrate minima and dissolved oxygen maxima occurred nearly simultaneously on the majority (> 80%) of days during the study period; both were strongly correlated with the daily peak in irradiance. Nighttime nitrate maxima reflected a pattern in which surface-layer stocks were depleted each afternoon and recharged the following night. Changes in nitrate concentrations were used to generate daily estimates of new primary production (182 ± 37 mg C m-2 d-1) and the f-ratio (0.25), i.e., the ratio of production based on nitrate to total production. These estimates, the first of their kind in Long Island Sound, were compared to values of community respiration, primary productivity, and net ecosystem metabolism, which were derived from in situ measurements of oxygen concentration. Daily averages of the three metabolic parameters were 1660 ± 431, 2080 ± 419, and 429 ± 203 mg C m-2 d-1, respectively. While the system remained weakly autotrophic over the duration of the study period, we observed very large day-to-day differences in the f-ratio and in the various metabolic parameters.
  • Thesis
    Experimental studies of turbulence in liquid-solid flows
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1969-08) Bohlen, Walter Franklin
    A series of laboratory experiments were performed to ascertain the extent and manner of turbulence modification induced by low concentration suspended loads of near neutral buoyancy. Hot-wire measurements of the fluid velocity field of free surface flows were obtained in a specially designed flume recirculating a dielectric liquid and 0.5 mm" diameter spherical plastic particles. In the fixed Reynolds number flow (16,800) the data obtained at six different concentration levels, ranging from 0 to 3.5% by volume, indicate that the presence of particles produces substantial turbulence changes. Even at this low level the mean velocity profile shows an increasing gradient near the bed and sharp deviation from a logarithmic profile. The rms level of each of the velocity components u', v' and w' increases, indicating a general rise in turbulence intensity. The Reynolds stress ρ u'v' increases, and its maximum value shifts away from the bed. The overall scale of turbulence appears to remain unchanged. The data indicate that offhand neglect of suspended particle presence is an oversimplification. There is a similarity between these data and those obtained under adverse pressure gradients. Some effort is made to clarify the altered turbulence production meechanism, and some future experimental work is proposed.