Kolodziej
Graham
Kolodziej
Graham
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticlePacific-wide pH snapshots reveal that high coral cover correlates with low, but variable pH(Rosenstiel School of Marine and Atmospheric Science, 2020-03-08) Manzello, Derek P. ; Enochs, Ian C. ; Carlton, Renée ; Bruckner, Andrew ; Kolodziej, Graham ; Dempsey, Alexandra ; Renaud, PhilipOcean acidification (OA) is impairing the construction of coral reefs while simultaneously accelerating their breakdown. The metabolism of different reef organism assemblages alters seawater pH in different ways, possibly buffering or exacerbating OA impacts. In spite of this, field data relating benthic community structure and seawater pH are sparse. We collected pH time-series data snapshots at 10 m depth from 28 different reefs (n = 13 lagoon, n = 15 fore reef) across 22 Pacific islands, spanning 31° latitude and 90° longitude. Coincident with all deployments, we measured percent cover of the benthic community. On fore reefs, high coral cover (CC) negatively correlated with mean and minimum pH, but positively correlated with pH variability. Conversely, pH minima were positively correlated to coverage of coralline and turf algae. Benthic cover did not correlate with pH in lagoonal reefs. From 0% to 100% CC, mean pH and aragonite saturation state (Ωarag) declined −0.081 and −0.51, respectively, while declines in minimum values were greater (Δmin pH = −0.164, Δmin Ωarag = −0.96). Based upon previously published relationships, the mean pH decline from 0% to 100% CC would depress coral calcification 7.7%–18.0% and increase biologically-mediated dissolution 13.5%–27.9%, with pH minima depressing dark coral calcification 14.4%–35.2% and increasing biologically-mediated dissolution 31.0%–62.2%. This spatially expansive dataset provides evidence that coral reefs with the highest coral cover may experience the lowest and most extreme pH values with OA.
-
ArticleCoral persistence despite marginal conditions in the Port of Miami(Nature Research, 2023-04-25) Enochs, Ian C. ; Studivan, Michael S. ; Kolodziej, Graham ; Foord, Colin ; Basden, Isabelle ; Boyd, Albert ; Formel, Nathan ; Kirkland, Amanda ; Rubin, Ewelina ; Jankulak, Mike ; Smith, Ian ; Kelble, Christopher R. ; Manzello, Derek P.Coral cover has declined worldwide due to anthropogenic stressors that manifest on both global and local scales. Coral communities that exist in extreme conditions can provide information on how these stressors influence ecosystem structure, with implications for their persistence under future conditions. The Port of Miami is located within an urbanized environment, with active coastal development, as well as commercial shipping and recreational boating activity. Monitoring of sites throughout the Port since 2018 has revealed periodic extremes in temperature, seawater pH, and salinity, far in excess of what have been measured in most coral reef environments. Despite conditions that would kill many reef species, we have documented diverse coral communities growing on artificial substrates at these sites-reflecting remarkable tolerance to environmental stressors. Furthermore, many of the more prevalent species within these communities are now conspicuously absent or in low abundance on nearby reefs, owing to their susceptibility and exposure to stony coral tissue loss disease. Natural reef frameworks, however, are largely absent at the urban sites and while diverse fish communities are documented, it is unlikely that these communities provide the same goods and services as natural reef habitats. Regardless, the existence of these communities indicates unlikely persistence and highlights the potential for coexistence of threatened species in anthropogenic environments, provided that suitable stewardship strategies are in place.
-
ArticleDifferent disease inoculations cause common responses of the host immune system and prokaryotic component of the microbiome in Acropora palmata.(Public Library of Science, 2023-05-25) Young, Benjamin D. ; Rosales, Stephanie M. ; Enochs, Ian C. ; Kolodziej, Graham ; Formel, Nathan ; Moura, Amelia ; DAlonso, Gabrielle L. ; Traylor-Knowles, NikkiReef-building corals contain a complex consortium of organisms, a holobiont, which responds dynamically to disease, making pathogen identification difficult. While coral transcriptomics and microbiome communities have previously been characterized, similarities and differences in their responses to different pathogenic sources has not yet been assessed. In this study, we inoculated four genets of the Caribbean branching coral Acropora palmata with a known coral pathogen (Serratia marcescens) and white band disease. We then characterized the coral’s transcriptomic and prokaryotic microbiomes’ (prokaryiome) responses to the disease inoculations, as well as how these responses were affected by a short-term heat stress prior to disease inoculation. We found strong commonality in both the transcriptomic and prokaryiomes responses, regardless of disease inoculation. Differences, however, were observed between inoculated corals that either remained healthy or developed active disease signs. Transcriptomic co-expression analysis identified that corals inoculated with disease increased gene expression of immune, wound healing, and fatty acid metabolic processes. Co-abundance analysis of the prokaryiome identified sets of both healthy-and-disease-state bacteria, while co-expression analysis of the prokaryiomes’ inferred metagenomic function revealed infected corals’ prokaryiomes shifted from free-living to biofilm states, as well as increasing metabolic processes. The short-term heat stress did not increase disease susceptibility for any of the four genets with any of the disease inoculations, and there was only a weak effect captured in the coral hosts’ transcriptomic and prokaryiomes response. Genet identity, however, was a major driver of the transcriptomic variance, primarily due to differences in baseline immune gene expression. Despite genotypic differences in baseline gene expression, we have identified a common response for components of the coral holobiont to different disease inoculations. This work has identified genes and prokaryiome members that can be focused on for future coral disease work, specifically, putative disease diagnostic tools.