Minnett Peter J.

No Thumbnail Available
Last Name
First Name
Peter J.

Search Results

Now showing 1 - 6 of 6
  • Preprint
    The SOLAS air-sea gas exchange experiment (SAGE) 2004
    ( 2010-03-11) Harvey, Mike J. ; Law, Cliff S. ; Smith, Murray J. ; Hall, Julie A. ; Abraham, Edward R. ; Stevens, Craig L. ; Hadfield, Mark G. ; Ho, David T. ; Ward, Brian ; Archer, Stephen D. ; Cainey, Jill M. ; Currie, Kim I. ; Devries, Dawn ; Ellwood, Michael J. ; Hill, Peter ; Jones, Graham B. ; Katz, Dave ; Kuparinen, Jorma ; Macaskill, Burns ; Main, William ; Marriner, Andrew ; McGregor, John ; McNeil, Craig L. ; Minnett, Peter J. ; Nodder, Scott D. ; Peloquin, Jill ; Pickmere, Stuart ; Pinkerton, Matthew H. ; Safi, Karl A. ; Thompson, Rona ; Walkington, Matthew ; Wright, Simon W. ; Ziolkowski, Lori A.
    The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the expansive Subpolar Zone of the southern oceans. This paper provides a general introduction and summary of the main experimental findings. The release site was selected from a pre-voyage desktop study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the south-east of New Zealand and the experiment conducted between mid-March and mid-April 2004. In common with other mesoscale iron addition experiments (FeAX’s), SAGE was designed as a Lagrangian study quantifying key biological and physical drivers influencing the air-sea gas exchange processes of CO2, DMS and other biogenic gases associated with an iron-induced phytoplankton bloom. A dual tracer SF6/3He release enabled quantification of both the lateral evolution of a labelled volume (patch) of ocean and the air-sea tracer exchange at the 10’s of km’s scale, in conjunction with the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the gas exchange coefficient on windspeed that is widely applicable and describes air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties, and wind speed were quantified to further assist the development of gas exchange models for high-wind environments. There was a significant increase in the photosynthetic competence (Fv/Fm) of resident phytoplankton within the first day following iron addition, but in contrast to other FeAX’s, rates of net primary production and column-integrated chlorophyll a concentrations had only doubled relative to the unfertilised surrounding waters by the end of the experiment. After 15 days and four iron additions totalling 1.1 tonne Fe2+, this was a very modest response compared to the other mesoscale iron enrichment experiments. An investigation of the factors limiting bloom development considered co- limitation by light and other nutrients, the phytoplankton seed-stock and grazing regulation. Whilst incident light levels and the initial Si:N ratio were the lowest recorded in all FeAX’s to date, there was only a small seed-stock of diatoms (less than 1% of biomass) and the main response to iron addition was by the picophytoplankton. A high rate of dilution of the fertilised patch relative to phytoplankton growth rate, the greater than expected depth of the surface mixed layer and microzooplankton grazing were all considered as factors that prevented significant biomass accumulation. In line with the limited response, the enhanced biological draw-down of pCO2 was small and masked by a general increase in pCO2 due to mixing with higher pCO2 waters. The DMS precursor DMSP was kept in check through grazing activity and in contrast to most FeAX’s dissolved dimethylsulfide (DMS) concentration declined through the experiment. SAGE is an important low-end member in the range of responses to iron addition in FeAX’s. In the context of iron fertilisation as a geoengineering tool for atmospheric CO2 removal, SAGE has clearly demonstrated that a significant proportion of the low iron ocean may not produce a phytoplankton bloom in response to iron addition.
  • Article
    Saildrone: adaptively sampling the marine environment
    (American Meteorological Society, 2020-06-01) Gentemann, Chelle L. ; Scott, Joel P. ; Mazzini, Piero L. F. ; Pianca, Cassia ; Akella, Santha ; Minnett, Peter J. ; Cornillon, Peter ; Fox-Kemper, Baylor ; Cetinić, Ivona ; Chin, T. Mike ; Gomez-Valdes, Jose ; Vazquez-Cuervo, Jorge ; Tsontos, Vardis ; Yu, Lisan ; Jenkins, Richard ; De Halleux, Sebastien ; Peacock, David ; Cohen, Nora
    From 11 April to 11 June 2018 a new type of ocean observing platform, the Saildrone surface vehicle, collected data on a round-trip, 60-day cruise from San Francisco Bay, down the U.S. and Mexican coast to Guadalupe Island. The cruise track was selected to optimize the science team’s validation and science objectives. The validation objectives include establishing the accuracy of these new measurements. The scientific objectives include validation of satellite-derived fluxes, sea surface temperatures, and wind vectors and studies of upwelling dynamics, river plumes, air–sea interactions including frontal regions, and diurnal warming regions. On this deployment, the Saildrone carried 16 atmospheric and oceanographic sensors. Future planned cruises (with open data policies) are focused on improving our understanding of air–sea fluxes in the Arctic Ocean and around North Brazil Current rings.
  • Article
    FluxSat: measuring the ocean-atmosphere turbulent exchange of heat and moisture from space
    (MDPI, 2020-06-03) Gentemann, Chelle L. ; Clayson, Carol A. ; Brown, Shannon ; Lee, Tong ; Parfitt, Rhys ; Farrar, J. Thomas ; Bourassa, Mark A. ; Minnett, Peter J. ; Seo, Hyodae ; Gille, Sarah T. ; Zlotnicki, Victor
    Recent results using wind and sea surface temperature data from satellites and high-resolution coupled models suggest that mesoscale ocean–atmosphere interactions affect the locations and evolution of storms and seasonal precipitation over continental regions such as the western US and Europe. The processes responsible for this coupling are difficult to verify due to the paucity of accurate air–sea turbulent heat and moisture flux data. These fluxes are currently derived by combining satellite measurements that are not coincident and have differing and relatively low spatial resolutions, introducing sampling errors that are largest in regions with high spatial and temporal variability. Observational errors related to sensor design also contribute to increased uncertainty. Leveraging recent advances in sensor technology, we here describe a satellite mission concept, FluxSat, that aims to simultaneously measure all variables necessary for accurate estimation of ocean–atmosphere turbulent heat and moisture fluxes and capture the effect of oceanic mesoscale forcing. Sensor design is expected to reduce observational errors of the latent and sensible heat fluxes by almost 50%. FluxSat will improve the accuracy of the fluxes at spatial scales critical to understanding the coupled ocean–atmosphere boundary layer system, providing measurements needed to improve weather forecasts and climate model simulations.
  • Article
    Air-sea fluxes with a focus on heat and momentum
    (Frontiers Media, 2019-07-31) Cronin, Meghan F. ; Gentemann, Chelle L. ; Edson, James B. ; Ueki, Iwao ; Bourassa, Mark A. ; Brown, Shannon ; Clayson, Carol A. ; Fairall, Christopher W. ; Farrar, J. Thomas ; Gille, Sarah T. ; Gulev, Sergey ; Josey, Simon A. ; Kato, Seiji ; Katsumata, Masaki ; Kent, Elizabeth ; Krug, Marjolaine ; Minnett, Peter J. ; Parfitt, Rhys ; Pinker, Rachel T. ; Stackhouse, Paul W., Jr. ; Swart, Sebastiaan ; Tomita, Hiroyuki ; Vandemark, Douglas ; Weller, Robert A. ; Yoneyama, Kunio ; Yu, Lisan ; Zhang, Dongxiao
    Turbulent and radiative exchanges of heat between the ocean and atmosphere (hereafter heat fluxes), ocean surface wind stress, and state variables used to estimate them, are Essential Ocean Variables (EOVs) and Essential Climate Variables (ECVs) influencing weather and climate. This paper describes an observational strategy for producing 3-hourly, 25-km (and an aspirational goal of hourly at 10-km) heat flux and wind stress fields over the global, ice-free ocean with breakthrough 1-day random uncertainty of 15 W m–2 and a bias of less than 5 W m–2. At present this accuracy target is met only for OceanSITES reference station moorings and research vessels (RVs) that follow best practices. To meet these targets globally, in the next decade, satellite-based observations must be optimized for boundary layer measurements of air temperature, humidity, sea surface temperature, and ocean wind stress. In order to tune and validate these satellite measurements, a complementary global in situ flux array, built around an expanded OceanSITES network of time series reference station moorings, is also needed. The array would include 500–1000 measurement platforms, including autonomous surface vehicles, moored and drifting buoys, RVs, the existing OceanSITES network of 22 flux sites, and new OceanSITES expanded in 19 key regions. This array would be globally distributed, with 1–3 measurement platforms in each nominal 10° by 10° box. These improved moisture and temperature profiles and surface data, if assimilated into Numerical Weather Prediction (NWP) models, would lead to better representation of cloud formation processes, improving state variables and surface radiative and turbulent fluxes from these models. The in situ flux array provides globally distributed measurements and metrics for satellite algorithm development, product validation, and for improving satellite-based, NWP and blended flux products. In addition, some of these flux platforms will also measure direct turbulent fluxes, which can be used to improve algorithms for computation of air-sea exchange of heat and momentum in flux products and models. With these improved air-sea fluxes, the ocean’s influence on the atmosphere will be better quantified and lead to improved long-term weather forecasts, seasonal-interannual-decadal climate predictions, and regional climate projections.
  • Article
    Global in situ observations of essential climate and ocean variables at the air-sea interface
    (Frontiers Media, 2019-07-25) Centurioni, Luca R. ; Turton, Jon ; Lumpkin, Rick ; Braasch, Lancelot ; Brassington, Gary ; Chao, Yi ; Charpentier, Etienne ; Chen, Zhaohui ; Corlett, Gary ; Dohan, Kathleen ; Donlon, Craig ; Gallage, Champika ; Hormann, Verena ; Ignatov, Alexander ; Ingleby, Bruce ; Jensen, Robert ; Kelly-Gerreyn, Boris A. ; Koszalka, Inga M. ; Lin, Xiaopei ; Lindstrom, Eric ; Maximenko, Nikolai ; Merchant, Christopher J. ; Minnett, Peter J. ; O’Carroll, Anne ; Paluszkiewicz, Theresa ; Poli, Paul ; Poulain, Pierre Marie ; Reverdin, Gilles ; Sun, Xiujun ; Swail, Val ; Thurston, Sidney ; Wu, Lixin ; Yu, Lisan ; Wang, Bin ; Zhang, Dongxiao
    The air–sea interface is a key gateway in the Earth system. It is where the atmosphere sets the ocean in motion, climate/weather-relevant air–sea processes occur, and pollutants (i.e., plastic, anthropogenic carbon dioxide, radioactive/chemical waste) enter the sea. Hence, accurate estimates and forecasts of physical and biogeochemical processes at this interface are critical for sustainable blue economy planning, growth, and disaster mitigation. Such estimates and forecasts rely on accurate and integrated in situ and satellite surface observations. High-impact uses of ocean surface observations of essential ocean/climate variables (EOVs/ECVs) include (1) assimilation into/validation of weather, ocean, and climate forecast models to improve their skill, impact, and value; (2) ocean physics studies (i.e., heat, momentum, freshwater, and biogeochemical air–sea fluxes) to further our understanding and parameterization of air–sea processes; and (3) calibration and validation of satellite ocean products (i.e., currents, temperature, salinity, sea level, ocean color, wind, and waves). We review strengths and limitations, impacts, and sustainability of in situ ocean surface observations of several ECVs and EOVs. We draw a 10-year vision of the global ocean surface observing network for improved synergy and integration with other observing systems (e.g., satellites), for modeling/forecast efforts, and for a better ocean observing governance. The context is both the applications listed above and the guidelines of frameworks such as the Global Ocean Observing System (GOOS) and Global Climate Observing System (GCOS) (both co-sponsored by the Intergovernmental Oceanographic Commission of UNESCO, IOC–UNESCO; the World Meteorological Organization, WMO; the United Nations Environment Programme, UNEP; and the International Science Council, ISC). Networks of multiparametric platforms, such as the global drifter array, offer opportunities for new and improved in situ observations. Advances in sensor technology (e.g., low-cost wave sensors), high-throughput communications, evolving cyberinfrastructures, and data information systems with potential to improve the scope, efficiency, integration, and sustainability of the ocean surface observing system are explored.
  • Article
    (Copernicus Publications, 2021-08-25) Stevens, Bjorn ; Bony, Sandrine ; Farrell, David ; Ament, Felix ; Blyth, Alan ; Fairall, Christopher W. ; Karstensen, Johannes ; Quinn, Patricia K. ; Speich, Sabrina ; Acquistapace, Claudia ; Aemisegger, Franziska ; Albright, Anna Lea ; Bellenger, Hugo ; Bodenschatz, Eberhard ; Caesar, Kathy-Ann ; Chewitt-Lucas, Rebecca ; de Boer, Gijs ; Delanoë, Julien ; Denby, Leif ; Ewald, Florian ; Fildier, Benjamin ; Forde, Marvin ; George, Geet ; Gross, Silke ; Hagen, Martin ; Hausold, Andrea ; Heywood, Karen J. ; Hirsch, Lutz ; Jacob, Marek ; Jansen, Friedhelm ; Kinne, Stefan ; Klocke, Daniel ; Kölling, Tobias ; Konow, Heike ; Lothon, Marie ; Mohr, Wiebke ; Naumann, Ann Kristin ; Nuijens, Louise ; Olivier, Léa ; Pincus, Robert ; Pöhlker, Mira L. ; Reverdin, Gilles ; Roberts, Gregory ; Schnitt, Sabrina ; Schulz, Hauke ; Siebesma, Pier ; Stephan, Claudia Christine ; Sullivan, Peter P. ; Touzé-Peiffer, Ludovic ; Vial, Jessica ; Vogel, Raphaela ; Zuidema, Paquita ; Alexander, Nicola ; Alves, Lyndon ; Arixi, Sophian ; Asmath, Hamish ; Bagheri, Gholamhossein ; Baier, Katharina ; Bailey, Adriana ; Baranowski, Dariusz ; Baron, Alexandre ; Barrau, Sébastien ; Barrett, Paul A. ; Batier, Frédéric ; Behrendt, Andreas ; Bendinger, Arne ; Beucher, Florent ; Bigorre, Sebastien P. ; Blades, Edmund ; Blossey, Peter ; Bock, Olivier ; Böing, Steven ; Bosser, Pierre ; Bourras, Denis ; Bouruet-Aubertot, Pascale ; Bower, Keith ; Branellec, Pierre ; Branger, Hubert ; Brennek, Michal ; Brewer, Alan ; Brilouet, Pierre-Etienne ; Brügmann, Björn ; Buehler, Stefan A. ; Burke, Elmo ; Burton, Ralph ; Calmer, Radiance ; Canonici, Jean-Christophe ; Carton, Xavier ; Cato, Gregory, Jr. ; Charles, Jude Andre ; Chazette, Patrick ; Chen, Yanxu ; Chilinski, Michal T. ; Choularton, Thomas ; Chuang, Patrick ; Clarke, Shamal ; Coe, Hugh ; Cornet, Céline ; Coutris, Pierre ; Couvreux, Fleur ; Crewell, Susanne ; Cronin, Timothy W. ; Cui, Zhiqiang ; Cuypers, Yannis ; Daley, Alton ; Damerell, Gillian M. ; Dauhut, Thibaut ; Deneke, Hartwig ; Desbios, Jean-Philippe ; Dörner, Steffen ; Donner, Sebastian ; Douet, Vincent ; Drushka, Kyla ; Dütsch, Marina ; Ehrlich, André ; Emanuel, Kerry A. ; Emmanouilidis, Alexandros ; Etienne, Jean-Claude ; Etienne-Leblanc, Sheryl ; Faure, Ghislain ; Feingold, Graham ; Ferrero, Luca ; Fix, Andreas ; Flamant, Cyrille ; Flatau, Piotr Jacek ; Foltz, Gregory R. ; Forster, Linda ; Furtuna, Iulian ; Gadian, Alan ; Galewsky, Joseph ; Gallagher, Martin ; Gallimore, Peter ; Gaston, Cassandra J. ; Gentemann, Chelle L. ; Geyskens, Nicolas ; Giez, Andreas ; Gollop, John ; Gouirand, Isabelle ; Gourbeyre, Christophe ; de Graaf, Dörte ; de Graaf, Geiske E. ; Grosz, Robert ; Güttler, Johannes ; Gutleben, Manuel ; Hall, Kashawn ; Harris, George ; Helfer, Kevin C. ; Henze, Dean ; Herbert, Calvert ; Holanda, Bruna ; Ibanez-Landeta, Antonio ; Intrieri, Janet ; Iyer, Suneil ; Julien, Fabrice ; Kalesse, Heike ; Kazil, Jan ; Kellman, Alexander ; Kidane, Abiel T. ; Kirchner, Ulrike ; Klingebiel, Marcus ; Körner, Mareike ; Kremper, Leslie Ann ; Kretzschmar, Jan ; Krüger, Ovid O. ; Kumala, Wojciech ; Kurz, Armin ; L'Hégareta, Pierre ; Labaste, Matthieu ; Lachlan-Cope, Thomas ; Laing, Arlene ; Landschützer, Peter ; Lang, Theresa ; Lange, Diego ; Lange, Ingo ; Laplace, Clément ; Lavik, Gauke ; Laxenaire, Rémi ; Le Bihan, Caroline ; Leandro, Mason ; Lefevre, Nathalie ; Lena, Marius ; Lenschow, Donald ; Li, Qiang ; Lloyd, Gary ; Los, Sebastian ; Losi, Niccolò ; Lovell, Oscar ; Luneau, Christopher ; Makuch, Przemyslaw ; Malinowski, Szymon ; Manta, Gaston ; Marinou, Eleni ; Marsden, Nicholas ; Masson, Sebastien ; Maury, Nicolas ; Mayer, Bernhard ; Mayers-Als, Margarette ; Mazel, Christophe ; McGeary, Wayne ; McWilliams, James C. ; Mech, Mario ; Mehlmann, Melina ; Meroni, Agostino Niyonkuru ; Mieslinger, Theresa ; Minikin, Andreas ; Minnett, Peter J. ; Möller, Gregor ; Morfa Avalos, Yanmichel ; Muller, Caroline ; Musat, Ionela ; Napoli, Anna ; Neuberger, Almuth ; Noisel, Christophe ; Noone, David ; Nordsiek, Freja ; Nowak, Jakub L. ; Oswald, Lothar ; Parker, Douglas J. ; Peck, Carolyn ; Person, Renaud ; Philippi, Miriam ; Plueddemann, Albert J. ; Pöhlker, Christopher ; Pörtge, Veronika ; Pöschl, Ulrich ; Pologne, Lawrence ; Posyniak, Michał ; Prange, Marc ; Quinones Melendez, Estefania ; Radtke, Jule ; Ramage, Karim ; Reimann, Jens ; Renault, Lionel ; Reus, Klaus ; Reyes, Ashford ; Ribbe, Joachim ; Ringel, Maximilian ; Ritschel, Markus ; Rocha, Cesar B. ; Rochetin, Nicolas ; Röttenbacher, Johannes ; Rollo, Callum ; Royer, Haley M. ; Sadoulet, Pauline ; Saffin, Leo ; Sandiford, Sanola ; Sandu, Irina ; Schäfer, Michael ; Schemann, Vera ; Schirmacher, Imke ; Schlenczek, Oliver ; Schmidt, Jerome M. ; Schröder, Marcel ; Schwarzenboeck, Alfons ; Sealy, Andrea ; Senff, Christoph J. ; Serikov, Ilya ; Shohan, Samkeyat ; Siddle, Elizabeth ; Smirnov, Alexander ; Späth, Florian ; Spooner, Branden ; Stolla, M. Katharina ; Szkółka, Wojciech ; de Szoeke, Simon P. ; Tarot, Stéphane ; Tetoni, Eleni ; Thompson, Elizabeth ; Thomson, Jim ; Tomassini, Lorenzo ; Totems, Julien ; Ubele, Alma Anna ; Villiger, Leonie ; von Arx, Jan ; Wagner, Thomas ; Walther, Andi ; Webber, Ben ; Wendisch, Manfred ; Whitehall, Shanice ; Wiltshire, Anton ; Wing, Allison A. ; Wirth, Martin ; Wiskandt, Jonathan ; Wolf, Kevin ; Worbes, Ludwig ; Wright, Ethan ; Young, Shanea ; Zhang, Chidong ; Zhang, Dongxiao ; Ziemen, Florian ; Zinner, Tobias ; Zöger, Martin
    The science guiding the EUREC4A campaign and its measurements is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement.