Landerer
Felix
Landerer
Felix
No Thumbnail Available
Search Results
Now showing
1 - 5 of 5
-
ArticleOcean mass, sterodynamic effects, and vertical land motion largely explain US coast relative sea level rise(Nature Research, 2021-11-09) Harvey, Thomas C. ; Hamlington, Benjamin D. ; Frederikse, Thomas ; Nerem, R. Steven ; Piecuch, Christopher G. ; Hammond, William C. ; Blewitt, Geoffrey ; Thompson, Philip R. ; Bekaert, David P. S. ; Landerer, Felix ; Reager, John T. ; Kopp, Robert E. ; Chandanpurkar, Hrishikesh A. ; Fenty, Ian ; Trossman, David S. ; Walker, Jennifer S. ; Boening, CarmenRegional sea-level changes are caused by several physical processes that vary both in space and time. As a result of these processes, large regional departures from the long-term rate of global mean sea-level rise can occur. Identifying and understanding these processes at particular locations is the first step toward generating reliable projections and assisting in improved decision making. Here we quantify to what degree contemporary ocean mass change, sterodynamic effects, and vertical land motion influence sea-level rise observed by tide-gauge locations around the contiguous U.S. from 1993 to 2018. We are able to explain tide gauge-observed relative sea-level trends at 47 of 55 sampled locations. Locations where we cannot explain observed trends are potentially indicative of shortcomings in our coastal sea-level observational network or estimates of uncertainty.
-
ArticleMeasuring global ocean heat content to estimate the Earth energy Imbalance(Frontiers Media, 2019-08-20) Meyssignac, Benoit ; Boyer, Tim ; Zhao, Zhongxiang ; Hakuba, Maria Z. ; Landerer, Felix ; Stammer, Detlef ; Kohl, Armin ; Kato, Seiji ; L’Ecuyer, Tristan S. ; Ablain, Michaël ; Abraham, John Patrick ; Blazquez, Alejandro ; Cazenave, Anny ; Church, John A. ; Cowley, Rebecca ; Cheng, Lijing ; Domingues, Catia M. ; Giglio, Donata ; Gouretski, Viktor ; Ishii, Masayoshi ; Johnson, Gregory C. ; Killick, Rachel E. ; Legler, David ; Llovel, William ; Lyman, John ; Palmer, Matthew D. ; Piotrowicz, Stephen R. ; Purkey, Sarah G. ; Roemmich, Dean ; Roca, Rémy ; Savita, Abhishek ; von Schuckmann, Karina ; Speich, Sabrina ; Stephens, Graeme ; Wang, Gongjie ; Wijffels, Susan E. ; Zilberman, NathalieThe energy radiated by the Earth toward space does not compensate the incoming radiation from the Sun leading to a small positive energy imbalance at the top of the atmosphere (0.4–1 Wm–2). This imbalance is coined Earth’s Energy Imbalance (EEI). It is mostly caused by anthropogenic greenhouse gas emissions and is driving the current warming of the planet. Precise monitoring of EEI is critical to assess the current status of climate change and the future evolution of climate. But the monitoring of EEI is challenging as EEI is two orders of magnitude smaller than the radiation fluxes in and out of the Earth system. Over 93% of the excess energy that is gained by the Earth in response to the positive EEI accumulates into the ocean in the form of heat. This accumulation of heat can be tracked with the ocean observing system such that today, the monitoring of Ocean Heat Content (OHC) and its long-term change provide the most efficient approach to estimate EEI. In this community paper we review the current four state-of-the-art methods to estimate global OHC changes and evaluate their relevance to derive EEI estimates on different time scales. These four methods make use of: (1) direct observations of in situ temperature; (2) satellite-based measurements of the ocean surface net heat fluxes; (3) satellite-based estimates of the thermal expansion of the ocean and (4) ocean reanalyses that assimilate observations from both satellite and in situ instruments. For each method we review the potential and the uncertainty of the method to estimate global OHC changes. We also analyze gaps in the current capability of each method and identify ways of progress for the future to fulfill the requirements of EEI monitoring. Achieving the observation of EEI with sufficient accuracy will depend on merging the remote sensing techniques with in situ measurements of key variables as an integral part of the Ocean Observing System.
-
ArticleUnderstanding of contemporary regional sea-level change and the implications for the future(American Geophysical Union, 2020-04-17) Hamlington, Benjamin D. ; Gardner, Alex S. ; Ivins, Erik ; Lenaerts, Jan T. M. ; Reager, John T. ; Trossman, David S. ; Zaron, Edward D. ; Adhikari, Surendra ; Arendt, Anthony ; Aschwanden, Andy ; Beckley, Brian D. ; Bekaert, David P. S. ; Blewitt, Geoffrey ; Caron, Lambert ; Chambers, Don P. ; Chandanpurkar, Hrishikesh A. ; Christianson, Knut ; Csatho, Beata ; Cullather, Richard I. ; DeConto, Robert M. ; Fasullo, John T. ; Frederikse, Thomas ; Freymueller, Jeffrey T. ; Gilford, Daniel M. ; Girotto, Manuela ; Hammond, William C. ; Hock, Regine ; Holschuh, Nicholas ; Kopp, Robert E. ; Landerer, Felix ; Larour, Eric ; Menemenlis, Dimitris ; Merrifield, Mark ; Mitrovica, Jerry X. ; Nerem, R. Steven ; Nias, Isabel J. ; Nieves, Veronica ; Nowicki, Sophie ; Pangaluru, Kishore ; Piecuch, Christopher G. ; Ray, Richard D. ; Rounce, David R. ; Schlegel, Nicole‐Jeanne ; Seroussi, Helene ; Shirzaei, Manoochehr ; Sweet, William V. ; Velicogna, Isabella ; Vinogradova, Nadya ; Wahl, Thomas ; Wiese, David N. ; Willis, Michael J.Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea‐level observing system, the knowledge of regional sea‐level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time. Despite the advances, gaps in the understanding of contemporary sea‐level change remain and inhibit the ability to predict how the relevant processes may lead to future change. These gaps arise in part due to the complexity of the linkages between the drivers of sea‐level change. Here we review the individual processes which lead to sea‐level change and then describe how they combine and vary regionally. The intent of the paper is to provide an overview of the current state of understanding of the processes that cause regional sea‐level change and to identify and discuss limitations and uncertainty in our understanding of these processes. Areas where the lack of understanding or gaps in knowledge inhibit the ability to provide the needed information for comprehensive planning efforts are of particular focus. Finally, a goal of this paper is to highlight the role of the expanded sea‐level observation network—particularly as related to satellite observations—in the improved scientific understanding of the contributors to regional sea‐level change.
-
ArticleHigh-tide floods and storm surges during atmospheric rivers on the US West Coast(American Geophysical Union, 2022-01-18) Piecuch, Christopher G. ; Coats, Sloan ; Dangendorf, Sönke ; Landerer, Felix ; Reager, John T. ; Thompson, Philip R. ; Wahl, ThomasAtmospheric rivers (ARs) cause inland hydrological impacts related to precipitation. However, little is known about coastal hazards associated with these events. We elucidate high-tide floods (HTFs) and storm surges during ARs on the US West Coast during 1980–2016. HTFs and ARs cooccur more often than expected from chance. Between 10% and 63% of HTFs coincide with ARs on average, depending on location. However, interannual-to-decadal variations in HTFs are due more to tides and mean sea-level changes than storminess variability. Only 2–15% of ARs coincide with HTFs, suggesting that ARs typically must cooccur with high tides or mean sea levels to cause HTFs. Storm surges during ARs reflect local wind, pressure, and precipitation forcing: meridional wind and barometric pressure are primary drivers, but precipitation makes secondary contributions. This study highlights the relevance of ARs to coastal impacts, clarifies the drivers of storm surge during ARs, and identifies future research directions.
-
ArticleThe dominant global modes of recent internal sea level variability(American Geophysical Union, 2019-03-21) Hamlington, Benjamin D. ; Cheon, Se-Hyeon ; Piecuch, Christopher G. ; Karnauskas, Kristopher B. ; Thompson, Philip R. ; Kim, Kwang-Yul ; Reager, John T. ; Landerer, Felix ; Frederikse, ThomasThe advances in the modern sea level observing system have allowed for a new level of knowledge of regional and global sea level in recent years. The combination of data from satellite altimeters, Gravity Recovery and Climate Experiment (GRACE) satellites, and Argo profiling floats has provided a clearer picture of the different contributors to sea level change, leading to an improved understanding of how sea level has changed in the present and, by extension, may change in the future. As the overlap between these records has recently extended past a decade in length, it is worth examining the extent to which internal variability on timescales from intraseasonal to decadal can be separated from long‐term trends that may be expected to continue into the future. To do so, a combined modal decomposition based on cyclostationary empirical orthogonal functions is performed simultaneously on the three data sets, and the dominant shared modes of variability are analyzed. Modes associated with the trend, seasonal signal, El Niño–Southern Oscillation, and Pacific decadal oscillation are extracted and discussed, and the relationship between regional patterns of sea level change and their associated global signature is highlighted.