Rueda María José

No Thumbnail Available
Last Name
Rueda
First Name
María José
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Regional differences in modelled net production and shallow remineralization in the North Atlantic subtropical gyre
    (Copernicus Publications on behalf of the European Geosciences Union, 2012-08-01) Fernandez-Castro, B. ; Anderson, Laurence A. ; Marañón, Emilio ; Neuer, Susanne ; Ausiin, B. ; Gonzalez-Davila, M. ; Santana-Casiano, J. M. ; Cianca, Andrés ; Santana, R. ; Llinas, Octavio ; Rueda, María José ; Mourino-Carballido, Beatriz
    We used 5-yr concomitant data of tracer distribution from the BATS (Bermuda Time-series Study) and ESTOC (European Station for Time-Series in the Ocean, Canary Islands) sites to build a 1-D tracer model conservation including horizontal advection, and then compute net production and shallow remineralization rates for both sites. Our main goal was to verify if differences in these rates are consistent with the lower export rates of particulate organic carbon observed at ESTOC. Net production rates computed below the mixed layer to 110 m from April to December for oxygen, dissolved inorganic carbon and nitrate at BATS (1.34±0.79 mol O2 m−2, −1.73±0.52 mol C m−2 and −125±36 mmol N m−2) were slightly higher for oxygen and carbon compared to ESTOC (1.03±0.62 mol O2 m−2, −1.42±0.30 mol C m−2 and −213±56 mmol N m−2), although the differences were not statistically significant. Shallow remineralization rates between 110 and 250 m computed at ESTOC (−3.9±1.0 mol O2 m−2, 1.53±0.43 mol C m−2 and 38±155 mmol N m−2) were statistically higher for oxygen compared to BATS (−1.81±0.37 mol O2 m−2, 1.52±0.30 mol C m−2 and 147±43 mmol N m−2). The lateral advective flux divergence of tracers, which was more significant at ESTOC, was responsible for the differences in estimated oxygen remineralization rates between both stations. According to these results, the differences in net production and shallow remineralization cannot fully explain the differences in the flux of sinking organic matter observed between both stations, suggesting an additional consumption of non-sinking organic matter at ESTOC.
  • Article
    Decadal analysis of hydrography and in situ nutrient budgets in the western and eastern North Atlantic subtropical gyre
    (American Geophysical Union, 2007-07-24) Cianca, Andrés ; Helmke, Peer ; Mourino, Beatriz ; Rueda, María José ; Llinas, Octavio ; Neuer, Susanne
    The current debate about the mechanisms and magnitude of new nutrient input to the euphotic zone in subtropical gyres calls for studies which consider large and mesoscale perspectives by combining in situ time series and remote observations. We carried out a first of its kind comparative analysis of hydrography and sea level anomaly (SLA) at the oligotrophic time series stations BATS (Bermuda Atlantic Time Series Study) and ESTOC (European Station for Time Series, Canary Islands) using concomitant 10-yr in situ and satellite altimetry data. The stations are located at about the same latitude in the western and eastern boundaries of the subtropical North Atlantic gyre, respectively, and provide the opportunity to study differences that may exist between both regions. Observed SLA was 0.25 m at BATS, compared with 0.12 m at ESTOC, a consequence of the higher eddy kinetic energy in the western compared with the eastern subtropical gyre. We quantified a detailed in situ nutrient budget for both time series stations; ESTOC received about 75% of the nutrients available for new production at BATS (in average 0.28 mol N m−2 yr−1 compared with 0.38 mol N m−2 yr−1, respectively), but the difference was not significant. However, significant differences in input mechanisms existed between both stations; eddy pumping constituted the main new nutrient source BATS, whereas wintertime convection was the main nutrient supply mechanism at ESTOC. In addition, the nutricline was significantly shallower at ESTOC compared with BATS, partly compensating for shallower mixed-layer depths and SLA variability at the western station. We found considerable interannual variability in both eddy pumping and wintertime convection which may be related to NAO-induced changes in the pattern of the subtropical gyre.
  • Article
    Correction to “Decadal analysis of hydrography and in situ nutrient budgets in the western and eastern North Atlantic subtropical gyre”
    (American Geophysical Union, 2008-03-07) Cianca, Andrés ; Helmke, Peer ; Mourino, Beatriz ; Rueda, María José ; Llinas, Octavio ; Neuer, Susanne