Environmental Geoscience

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 20 of 63
  • Article
    Forecasting sea level rise-driven inundation in diked and tidally restricted coastal lowlands
    (Springer, 2023-05-05) Befus, Kevin M. ; Kurnizki, Alexander P. D. ; Kroeger, Kevin D. ; Eagle, Meagan J. ; Smith, Tim P.
    Diked and drained coastal lowlands rely on hydraulic and protective infrastructure that may not function as designed in areas with relative sea-level rise. The slow and incremental loss of the hydraulic conditions required for a well-drained system make it difficult to identify if and when the flow structures no longer discharge enough water, especially in tidal settings where two-way flows occur through the dike. We developed and applied a hydraulic mass-balance model to quantify how water levels in the diked and tidally restricted coastal wetlands and water bodies dynamically respond to sea-level rise, specifically applied to the Herring River Estuary in MA, USA, from 2020 to 2100. Sensitivity testing of the model parameters indicated that primary outcomes were not sensitive to many of the chosen input values, though the terrestrial water input rate to the estuary and the flow coefficient for the hydraulic infrastructure were important. The relative importance of parameters, however, is expected to be site specific. We introduced a drainability metric that quantifies the net water volume drained over every tidal cycle to monitor and forecast how rising water levels on either side of the dike affected the net draining or impounding conditions of the system. Ensembles of model results across parameter and sea-level scenario uncertainties indicated that substantial impoundment of the Herring River Estuary was expected within ~ 20 years with the existing flow structures, a sluice and two flap gates. Simulations with up to three additional gates did not dampen this trend toward impoundment, suggesting that rising impounded water levels are likely even with major construction upgrades. Increasingly impounded diked coastal waterbodies present a hydrologic challenge with socioecological implications due to projected flooding and ecosystem impacts. Solutions to this challenge may be to allow coastal wetland restoration pathways or require substantial and recurring infrastructure improvement projects.
  • Article
    Peat decomposition and erosion contribute to pond deepening in a temperate salt marsh
    (American Geophysical Union, 2023-01-30) Luk, Sheron ; Eagle, Meagan J. ; Mariotti, Giulio ; Gosselin, Kelsey ; Sanderman, Jonathan ; Spivak, Amanda C.
    Salt marsh ponds expand and deepen over time, potentially reducing ecosystem carbon storage and resilience. The water filled volumes of ponds represent missing carbon due to prevented soil accumulation and removal by erosion and decomposition. Removal mechanisms have different implications as eroded carbon can be redistributed while decomposition results in loss. We constrained ponding effects on carbon dynamics in a New England marsh and determined whether expansion and deepening impact nearby soils by conducting geochemical characterizations of cores from three ponds and surrounding high marshes and models of wind‐driven erosion. Radioisotope profiles demonstrate that ponds are not depositional environments and that contemporaneous marsh accretion represents prevented accumulation accounting for 32%–42% of the missing carbon. Erosion accounted for 0%–38% and was bracketed using radioisotope inventories and wind‐driven resuspension models. Decomposition, calculated by difference, removes 22%–68%, and when normalized over pond lifespans, produces rates that agree with previous metabolism measurements. Pond surface soils contain new contributions from submerged primary producers and evidence of microbial alteration of underlying peat, as higher levels of detrital biomarkers and thermal stability indices, compared to the marsh. Below pond surface horizons, soil properties and organic matter composition were similar to the marsh, indicating that ponding effects are shallow. Soil bulk density, elemental content, and accretion rates were similar between marsh sites but different from ponds, suggesting that lateral effects are spatially confined. Consequently, ponds negatively impact ecosystem carbon storage but at current densities are not causing pervasive degradation of marshes in this system.
  • Article
    Higher Temperature Sensitivity of Ecosystem Respiration in Low Marsh Compared to High Elevation Marsh Ecosystems
    (American Geophysical Union, 2022-10-22) Carey, Joanna C. ; Kroeger, Kevin D. ; Tang, Jianwu
    Salt marsh habitats contain some of the highest quantities of soil organic carbon (C) per unit area, but increasing anthropogenic stressors threaten their ability to maintain themselves as large C reservoirs in some regions. We quantify rates of C gas exchange (methane [CH4] and carbon dioxide [CO2]) monthly across a 16‐month period from a low nitrogen “reference” salt marsh on Cape Cod in New England using static chambers. While the summer period is the most dynamic period of marsh C gas exchange, we observed substantial fluxes in the early summer through late fall, highlighting the importance of including shoulder seasons in studies of marsh C exchange. We estimate annual ecosystem respiration between 108 and 252 g C m−2 yr−1, which varied based on temperature and elevation. This flux is lower than in other nearby marshes, which we attribute to the frequently inundated, microtidal nature of the site, resulting in the majority of respired CO2 being exported via lateral, not vertical, fluxes from this marsh. We observed significantly higher temperature sensitivity from the low elevation of the marsh compared to the high marsh. Recent acceleration in the rate of sea level rise is leading to a well‐documented expansion of low marsh into high marsh vegetation zones in this marsh system and others in the region. While rates of C burial are higher in the low marsh compared to the high marsh, the higher temperature sensitivity of respiration in the low marsh may diminish the longevity of marsh C stocks with climate warming.
  • Article
    Soil carbon consequences of historic hydrologic impairment and recent restoration in coastal wetlands
    (Association for the Sciences of Limnology and Oceanography, 2022-08-06) Eagle, Meagan ; Kroeger, Kevin D. ; Spivak, Amanda C. ; Wang, Faming ; Tang, Jianwu ; Abdul-Aziz, Omar I. ; Ishtiaq, Khandker S. ; O'Keefe Suttles, Jennifer A. ; Mann, Adrian G.
    Coastal wetlands provide key ecosystem services, including substantial long-term storage of atmospheric CO2 in soil organic carbon pools. This accumulation of soil organic matter is a vital component of elevation gain in coastal wetlands responding to sea-level rise. Anthropogenic activities that alter coastal wetland function through disruption of tidal exchange and wetland water levels are ubiquitous. This study assesses soil vertical accretion and organic carbon accretion across five coastal wetlands that experienced over a century of impounded hydrology, followed by restoration of tidal exchange 5 to 14 years prior to sampling. Nearby marshes that never experienced tidal impoundment served as controls with natural hydrology to assess the impact of impoundment and restoration. Dated soil cores indicate that elevation gain and carbon storage were suppressed 30–70 % during impoundment, accounting for the majority of elevation deficit between impacted and natural sites. Only one site had substantial subsidence, likely due to oxidation of soil organic matter. Vertical and carbon accretion gains were achieved at all restored sites, with carbon burial increasing from 96 ± 33 to 197 ± 64 g C m−2 y−1. The site with subsidence was able to accrete at double the rate (13 ± 5.6 mm y−1) of the natural complement, due predominantly to organic matter accumulation rather than mineral deposition, indicating these ecosystems are capable of large dynamic responses to restoration when conditions are optimized for vegetation growth. Hydrologic restoration enhanced elevation resilience and climate benefits of these coastal wetlands.
  • Article
    Revisiting 228Th as a tool for determining sedimentation and mass accumulation rates
    (Elsevier, 2022-07-12) Tamborski, Joseph ; Cai, Pinghe ; Eagle, Meagan ; Henderson, Paul B. ; Charette, Matthew A.
    The use of 228Th has seen limited application for determining sedimentation and mass accumulation rates in coastal and marine environments. Recent analytical advances have enabled rapid, precise measurements of particle-bound 228Th using a radium delayed coincidence counting system (RaDeCC). Herein we review the 228Th cycle in the marine environment and revisit the historical use of 228Th as a tracer for determining sediment vertical accretion and mass accumulation rates in light of new measurement techniques. Case studies comparing accumulation rates from 228Th and 210Pb are presented for a micro-tidal salt marsh and a marginal sea environment. 228Th and 210Pb have been previously measured in mangrove, deltaic, continental shelf and ocean basin environments, and a literature synthesis reveals that 228Th (measured via alpha or gamma spectrometry) derived accumulation rates are generally equal to or greater than estimates derived from 210Pb, reflecting different integration periods. Use of 228Th is well-suited for shallow (<15 cm) cores over decadal timescales. Application is limited to relatively homogenous sediment profiles with minor variations in grain size and minimal bioturbation. When appropriate conditions are met, complimentary use of 228Th and 210Pb can demonstrate that the upper layers of a core are undisturbed and can improve spatial coverage in mapping accumulation rates due to the higher sample throughput for sediment 228Th.
  • Article
    Detection and characterization of coastal tidal wetland change in the northeastern US using Landsat time series
    (Elsevier, 2022-04-26) Yang, Xiucheng ; Zhu, Zhe ; Qiu, Shi ; Kroeger, Kevin D. ; Zhu, Zhiliang ; Covington, Scott
    Coastal tidal wetlands are highly altered ecosystems exposed to substantial risk due to widespread and frequent land-use change coupled with sea-level rise, leading to disrupted hydrologic and ecologic functions and ultimately, significant reduction in climate resiliency. Knowing where and when the changes have occurred, and the nature of those changes, is important for coastal communities and natural resource management. Large-scale mapping of coastal tidal wetland changes is extremely difficult due to their inherent dynamic nature. To bridge this gap, we developed an automated algorithm for DEtection and Characterization of cOastal tiDal wEtlands change (DECODE) using dense Landsat time series. DECODE consists of three elements, including spectral break detection, land cover classification and change characterization. DECODE assembles all available Landsat observations and introduces a water level regressor for each pixel to flag the spectral breaks and estimate harmonic time-series models for the divided temporal segments. Each temporal segment is classified (e.g., vegetated wetlands, open water, and others – including unvegetated areas and uplands) based on the phenological characteristics and the synthetic surface reflectance values calculated from the harmonic model coefficients, as well as a generic rule-based classification system. This harmonic model-based approach has the advantage of not needing the acquisition of satellite images at optimal conditions (i.e., low tide status) to avoid underestimating coastal vegetation caused by the tidal fluctuation. At the same time, DECODE can also characterize different kinds of changes including land cover change and condition change (i.e., land cover modification without conversion). We used DECODE to track status of coastal tidal wetlands in the northeastern United States from 1986 to 2020. The overall accuracy of land cover classification and change detection is approximately 95.8% and 99.8%, respectively. The vegetated wetlands and open water were mapped with user's accuracy of 94.6% and 99.0%, and producer's accuracy of 98.1% and 93.5%, respectively. The cover change and condition change were mapped with user's accuracy of 68.0% and 80.0%, and producer's accuracy of 80.5% and 97.1%, respectively. Approximately 3283 km2 of the coastal landscape within our study area in the northeastern United States changed at least once (12% of the study area), and condition changes were the dominant change type (84.3%). Vegetated coastal tidal wetland decreased consistently (~2.6 km2 per year) in the past 35 years, largely due to conversion to open water in the context of sea-level rise.
  • Article
    Impoundment increases methane emissions in Phragmites‐invaded coastal wetlands
    (Wiley, 2022-05-26) Sanders-DeMott, Rebecca ; Eagle, Meagan ; Kroeger, Kevin D. ; Wang, Faming ; Brooks, Thomas W. ; O'Keefe Suttles, Jennifer A. ; Nick, Sydney K. ; Mann, Adrian G. ; Tang, Jianwu
    Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted tidal exchange in vast areas of coastal wetlands. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls and scaling of carbon exchange in these understudied ecosystems is critical for informing climate consequences of blue carbon restoration and/or management interventions. Here, we (1) examine how carbon fluxes vary across a salinity gradient (4–25 psu) in impounded and natural, tidally unrestricted Phragmites wetlands using static chambers and (2) probe drivers of carbon fluxes within an impounded coastal wetland using eddy covariance at the Herring River in Wellfleet, MA, United States. Freshening across the salinity gradient led to a 50-fold increase in CH4 emissions, but effects on carbon dioxide (CO2) were less pronounced with uptake generally enhanced in the fresher, impounded sites. The impounded wetland experienced little variation in water-table depth or salinity during the growing season and was a strong CO2 sink of −352 g CO2-C m−2 year−1 offset by CH4 emission of 11.4 g CH4-C m−2 year−1. Growing season CH4 flux was driven primarily by temperature. Methane flux exhibited a diurnal cycle with a night-time minimum that was not reflected in opaque chamber measurements. Therefore, we suggest accounting for the diurnal cycle of CH4 in Phragmites, for example by applying a scaling factor developed here of ~0.6 to mid-day chamber measurements. Taken together, these results suggest that although freshened, impounded wetlands can be strong carbon sinks, enhanced CH4 emission with freshening reduces net radiative balance. Restoration of tidal flow to impounded ecosystems could limit CH4 production and enhance their climate regulating benefits.
  • Article
    Tracking environmental change using low-cost instruments during the winter-spring transition season
    (University of California Press, 2022-03-24) Burakowski, Elizabeth ; Sallade, Sarah ; Contosta, Alix ; Sanders-DeMott, Rebecca ; Grogan, Danielle
    The winter-spring shoulder season, or vernal window, is a key period for ecosystem carbon, water, and energy cycling. Sometimes referred to as mud season, in temperate forests, this transitional season opens with the melting of snowpack in seasonally snow-covered forests and closes when the canopy fills out. Sunlight pours onto the forest floor, soils thaw and warm, and there is an uptick in soil respiration. Scientists hypothesize that this window of ecological opportunity will lengthen in the future; these changes could have implications across all levels of the ecosystem, including the availability of food and water in human systems. Yet, there remains a dearth of observations that track both winter and spring indicators at the same location. Here, we present an inquiry-based, low-cost approach for elementary to high school classrooms to track environmental changes in the winter-spring shoulder season. Engagement in hypothesis generation and the use of claim, evidence, and reasoning practices are coupled with field measurement protocols, which provides teachers and students an authentic research experience that allows for a place-based understanding of local ecosystems and their connection to climate change.
  • Article
    Climate change influences foliar nutrition and metabolism of red maple (Acer rubrum) trees in a northern hardwood forest
    (Ecological Society of America, 2022-02-21) Blagden, Megan ; Harrison, Jamie L. ; Minocha, Rakesh ; Sanders-DeMott, Rebecca ; Long, Stephanie ; Templer, Pamela H.
    Mean annual air temperatures are projected to increase, while the winter snowpack is expected to shrink in depth and duration for many mid- and high-latitude temperate forest ecosystems over the next several decades. Together, these changes will lead to warmer growing season soil temperatures and an increased frequency of soil freeze–thaw cycles (FTCs) in winter. We took advantage of the Climate Change Across Seasons Experiment (CCASE) at the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire, USA, to determine how these changes in soil temperature affect foliar nitrogen (N) and carbon metabolism of red maple (Acer rubrum) trees in 2015 and 2017. Earlier work from this study revealed a similar increase in foliar N concentrations with growing season soil warming, with or without the occurrence of soil FTCs in winter. However, these changes in soil warming could differentially affect the availability of cellular nutrients, concentrations of primary and secondary metabolites, and the rates of photosynthesis that are all responsive to climate change. We found that foliar concentrations of phosphorus (P), potassium (K), N, spermine (a polyamine), amino acids (alanine, histidine, and phenylalanine), chlorophyll, carotenoids, sucrose, and rates of photosynthesis increased with growing season soil warming. Despite similar concentrations of foliar N with soil warming with and without soil FTCs in winter, winter soil FTCs affected other foliar metabolic responses. The combination of growing season soil warming and winter soil FTCs led to increased concentrations of two polyamines (putrescine and spermine) and amino acids (alanine, proline, aspartic acid, γ-aminobutyric acid, valine, leucine, and isoleucine). Treatment-specific metabolic changes indicated that while responses to growing season warming were more connected to their role as growth modulators, soil warming + FTC treatment-related effects revealed their dual role in growth and stress tolerance. Together, the results of this study demonstrate that growing season soil warming has multiple positive effects on foliar N and cellular metabolism in trees and that some of these foliar responses are further modified by the addition of stress from winter soil FTCs.
  • Article
    Improved wetland soil organic carbon stocks of the conterminous U.S. through data harmonization
    (Frontiers Media, 2021-10-12) Uhran, Bergit ; Windham-Myers, Lisamarie ; Bliss, Norman B. ; Nahlik, Amanda M. ; Sundquist, Eric T. ; Stagg, Camille L.
    Wetland soil stocks are important global repositories of carbon (C) but are difficult to quantify and model due to varying sampling protocols, and geomorphic/spatio-temporal discontinuity. Merging scales of soil-survey spatial extents with wetland-specific point-based data offers an explicit, empirical and updatable improvement for regional and continental scale soil C stock assessments. Agency-collected and community-contributed soil datasets were compared for representativeness and bias, with the goal of producing a harmonized national map of wetland soil C stocks with error quantification for wetland areas of the conterminous United States (CONUS) identified by the USGS National Landcover Change Dataset. This allowed an empirical predictive model of SOC density to be applied across the entire CONUS using relational %OC distribution alone. A broken-stick quantile-regression model identified %OC with its relatively high analytical confidence as a key predictor of SOC density in soil segments; soils <6% OC (hereafter, mineral wetland soils, 85% of the dataset) had a strong linear relationship of %OC to SOC density (RMSE = 0.0059, ~4% mean RMSE) and soils >6% OC (organic wetland soils, 15% of the dataset) had virtually no predictive relationship of %OC to SOC density (RMSE = 0.0348 g C cm−3, ~56% mean RMSE). Disaggregation by vegetation type or region did not alter the breakpoint significantly (6% OC) and did not improve model accuracies for inland and tidal wetlands. Similarly, SOC stocks in tidal wetlands were related to %OC, but without a mappable product for disaggregation to improve accuracy by soil class, region or depth. Our layered harmonized CONUS wetland soil maps revised wetland SOC stock estimates downward by 24% (9.5 vs. 12.5Pg C) with the overestimation being entirely an issue of inland organic wetland soils (35% lower than SSURGO-derived SOC stocks). Further, SSURGO underestimated soil carbon stocks at depth, as modeled wetland SOC stocks for organic-rich soils showed significant preservation downcore in the NWCA dataset (<3% loss between 0 and 30 cm and 30 and 100 cm depths) in contrast to mineral-rich soils (37% downcore stock loss). Future CONUS wetland soil C assessments will benefit from focused attention on improved organic wetland soil measurements, land history, and spatial representativeness.
  • Article
    Recent nitrogen storage and accumulation rates in mangrove soils exceed historic rates in the urbanized San Juan Bay Estuary (Puerto Rico, United States)
    (Frontiers Media, 2021-11-12) Wigand, Cathleen ; Oczkowski, Autumn J. ; Branoff, Benjamin L. ; Eagle, Meagan ; Hanson, Alana ; Martin, Rose M. ; Balogh, Stephen ; Miller, Kenneth M. ; Huertas, Evelyn ; Loffredo, Joseph ; Watson, Elizabeth
    Tropical mangrove forests have been described as “coastal kidneys,” promoting sediment deposition and filtering contaminants, including excess nutrients. Coastal areas throughout the world are experiencing increased human activities, resulting in altered geomorphology, hydrology, and nutrient inputs. To effectively manage and sustain coastal mangroves, it is important to understand nitrogen (N) storage and accumulation in systems where human activities are causing rapid changes in N inputs and cycling. We examined N storage and accumulation rates in recent (1970 – 2016) and historic (1930 – 1970) decades in the context of urbanization in the San Juan Bay Estuary (SJBE, Puerto Rico), using mangrove soil cores that were radiometrically dated. Local anthropogenic stressors can alter N storage rates in peri-urban mangrove systems either directly by increasing N soil fertility or indirectly by altering hydrology (e.g., dredging, filling, and canalization). Nitrogen accumulation rates were greater in recent decades than historic decades at Piñones Forest and Martin Peña East. Martin Peña East was characterized by high urbanization, and Piñones, by the least urbanization in the SJBE. The mangrove forest at Martin Peña East fringed a poorly drained canal and often received raw sewage inputs, with N accumulation rates ranging from 17.7 to 37.9 g m–2 y–1 in recent decades. The Piñones Forest was isolated and had low flushing, possibly exacerbated by river damming, with N accumulation rates ranging from 18.6 to 24.2 g m–2 y–1 in recent decades. Nearly all (96.3%) of the estuary-wide mangrove N (9.4 Mg ha–1) was stored in the soils with 7.1 Mg ha–1 sequestered during 1970–2017 (0–18 cm) and 2.3 Mg ha–1 during 1930–1970 (19–28 cm). Estuary-wide mangrove soil N accumulation rates were over twice as great in recent decades (0.18 ± 0.002 Mg ha–1y–1) than historically (0.08 ± 0.001 Mg ha–1y–1). Nitrogen accumulation rates in SJBE mangrove soils in recent times were twofold larger than the rate of human-consumed food N that is exported as wastewater (0.08 Mg ha–1 y–1), suggesting the potential for mangroves to sequester human-derived N. Conservation and effective management of mangrove forests and their surrounding watersheds in the Anthropocene are important for maintaining water quality in coastal communities throughout tropical regions.
  • Article
    Oxygen-controlled recirculating seepage meter reveals extent of nitrogen transformation in discharging coastal groundwater at the aquifer-estuary interface
    (Association for the Sciences of Limnology and Oceanography, 2021-06-04) Brooks, Thomas W. ; Kroeger, Kevin D. ; Michael, Holly A. ; York, Joanna K.
    Nutrient loads delivered to estuaries via submarine groundwater discharge (SGD) play an important role in the nitrogen (N) budget and eutrophication status. However, accurate and reliable quantification of the chemical flux across the final decimeters and centimeters at the sediment–estuary interface remains a challenge, because there is significant potential for biogeochemical alteration due to contrasting conditions in the coastal aquifer and surface sediment. Here, a novel, oxygen- and light-regulated ultrasonic seepage meter, and a standard seepage meter, were used to measure SGD and calculate N species fluxes across the sediment–estuary interface. Coupling the measurements to an endmember approach based on subsurface N concentrations and an assumption of conservative transport enabled estimation of the extent of transformation occurring in discharging groundwater within the benthic zone. Biogeochemical transformation within reactive estuarine surface sediment was a dominant driver in modifying the N flux carried upward by SGD, and resulted in a similar percentage of N removal (~ 42–52%) as did transformations occurring deeper within the coastal aquifer salinity mixing zone (~ 42–47%). Seasonal shifts in the relative importance of biogeochemical processes including denitrification, nitrification, dissimilatory nitrate reduction, and assimilation altered the composition of the flux to estuarine surface water, which was dominated by ammonium in June and by nitrate in August, despite the endmember-based observation that fixed N in discharging groundwater was strongly dominated by nitrate. This may have important ramifications for the ecology and management of estuaries, since past N loading estimates have generally assumed conservative transport from the nearshore aquifer to estuary.
  • Article
    Pore water exchange-driven inorganic carbon export from intertidal salt marshes
    (Association for the Sciences of Limnology and Oceanography, 2021-03-11) Tamborski, Joseph ; Eagle, Meagan ; Kurylyk, Barret L. ; Kroeger, Kevin D. ; Wang, Zhaoihui Aleck ; Henderson, Paul B. ; Charette, Matthew A.
    Respiration in intertidal salt marshes generates dissolved inorganic carbon (DIC) that is exported to the coastal ocean by tidal exchange with the marsh platform. Understanding the link between physical drivers of water exchange and chemical flux is a key to constraining coastal wetland contributions to regional carbon budgets. The spatial and temporal (seasonal, annual) variability of marsh pore water exchange and DIC export was assessed from a microtidal salt marsh (Sage Lot Pond, Massachusetts). Spatial variability was constrained from 224Ra : 228Th disequilibria across two hydrologic units within the marsh sediments. Disequilibrium between the more soluble 224Ra and its sediment-bound parent 228Th reveals significant pore water exchange in the upper 5 cm of the marsh surface (0–36 L m−2 d−1) that is most intense in low marsh elevation zones, driven by tidal overtopping. Surficial sediment DIC transport ranges from 0.0 to 0.7 g C m−2 d−1. The sub-surface sediment horizon intersected by mean low tide was disproportionately impacted by tidal pumping (20–80 L m−2 d−1) and supplied a seasonal DIC flux of 1.7–5.4 g C m−2 d−1. Export exceeded 10 g C m−2 d−1 for another marsh unit, demonstrating that fluxes can vary substantially across salt marshes under similar conditions within the same estuary. Seasonal and annual variability in marsh pore water exchange, constrained from tidal time-series of radium isotopes, was driven in part by variability in mean sea level. Rising sea levels will further inundate high marsh elevation zones, which may lead to greater DIC export.
  • Article
    Soil organic carbon development and turnover in natural and disturbed salt marsh environments
    (American Geophysical Union, 2020-12-11) Luk, Sheron Y. ; Todd‐Brown, Katherine ; Eagle, Meagan ; McNichol, Ann P. ; Sanderman, Jonathan ; Gosselin, Kelsey M. ; Spivak, Amanda C.
    Salt marsh survival with sea‐level rise (SLR) increasingly relies on soil organic carbon (SOC) accumulation and preservation. Using a novel combination of geochemical approaches, we characterized fine SOC (≤1 mm) supporting marsh elevation maintenance. Overlaying thermal reactivity, source (δ13C), and age (F14C) information demonstrates several processes contributing to soil development: marsh grass production, redeposition of eroded material, and microbial reworking. Redeposition of old carbon, likely from creekbanks, represented ∼9%–17% of shallow SOC (≤26 cm). Soils stored marsh grass‐derived compounds with a range of reactivities that were reworked over centuries‐to‐millennia. Decomposition decreases SOC thermal reactivity throughout the soil column while the decades‐long disturbance of ponding accelerated this shift in surface horizons. Empirically derived estimates of SOC turnover based on geochemical composition spanned a wide range (640–9,951 years) and have the potential to inform predictions of marsh ecosystem evolution.
  • Article
    Environmental controls, emergent scaling, and predictions of greenhouse gas (GHG) fluxes in coastal salt marshes
    (John Wiley & Sons, 2018-07-28) Abdul-Aziz, Omar I. ; Ishtiaq, Khandker S. ; Tang, Jianwu ; Moseman-Valtierra, Serena M. ; Kroeger, Kevin D. ; Gonneea, Meagan E. ; Mora, Jordan ; Morkeski, Kate
    Coastal salt marshes play an important role in mitigating global warming by removing atmospheric carbon at a high rate. We investigated the environmental controls and emergent scaling of major greenhouse gas (GHG) fluxes such as carbon dioxide (CO2) and methane (CH4) in coastal salt marshes by conducting data analytics and empirical modeling. The underlying hypothesis is that the salt marsh GHG fluxes follow emergent scaling relationships with their environmental drivers, leading to parsimonious predictive models. CO2 and CH4 fluxes, photosynthetically active radiation (PAR), air and soil temperatures, well water level, soil moisture, and porewater pH and salinity were measured during May–October 2013 from four marshes in Waquoit Bay and adjacent estuaries, MA, USA. The salt marshes exhibited high CO2 uptake and low CH4 emission, which did not significantly vary with the nitrogen loading gradient (5–126 kg · ha−1 · year−1) among the salt marshes. Soil temperature was the strongest driver of both fluxes, representing 2 and 4–5 times higher influence than PAR and salinity, respectively. Well water level, soil moisture, and pH did not have a predictive control on the GHG fluxes, although both fluxes were significantly higher during high tides than low tides. The results were leveraged to develop emergent power law‐based parsimonious scaling models to accurately predict the salt marsh GHG fluxes from PAR, soil temperature, and salinity (Nash‐Sutcliffe Efficiency = 0.80–0.91). The scaling models are available as a user‐friendly Excel spreadsheet named Coastal Wetland GHG Model to explore scenarios of GHG fluxes in tidal marshes under a changing climate and environment.
  • Article
    Deciphering the dynamics of inorganic carbon export from intertidal salt marshes using high-frequency measurements
    (Elsevier, 2018-08-25) Chu, Sophie N. ; Wang, Zhaohui Aleck ; Gonneea, Meagan E. ; Kroeger, Kevin D. ; Ganju, Neil K.
    The lateral export of carbon from coastal marshes via tidal exchange is a key component of the marsh carbon budget and coastal carbon cycles. However, the magnitude of this export has been difficult to accurately quantify due to complex tidal dynamics and seasonal cycling of carbon. In this study, we use in situ, high-frequency measurements of dissolved inorganic carbon (DIC) and water fluxes to estimate lateral DIC fluxes from a U.S. northeastern salt marsh. DIC was measured by a CHANnelized Optical Sensor (CHANOS) that provided an in situ concentration measurement at 15-min intervals, during periods in summer (July – August) and late fall (December). Seasonal changes in the marsh had strong effects on DIC concentrations, while tidally-driven water fluxes were the fundamental vehicle of marsh carbon export. Episodic events, such as groundwater discharge and mean sea water level changes, can impact DIC flux through altered DIC concentrations and water flow. Variability between individual tides within each season was comparable to mean variability between the two seasons. Estimated mean DIC fluxes based on a multiple linear regression (MLR) model of DIC concentrations and high-frequency water fluxes agreed reasonably well with those derived from CHANOS DIC measurements for both study periods, indicating that high-frequency, modeled DIC concentrations, coupled with continuous water flux measurements and a hydrodynamic model, provide a robust estimate of DIC flux. Additionally, an analysis of sampling strategies revealed that DIC fluxes calculated using conventional sampling frequencies (hourly to two-hourly) of a single tidal cycle are unlikely to capture a representative mean DIC flux compared to longer-term measurements across multiple tidal cycles with sampling frequency on the order of tens of minutes. This results from a disproportionately large amount of the net DIC flux occurring over a small number of tidal cycles, while most tides have a near-zero DIC export. Thus, high-frequency measurements (on the order of tens of minutes or better) over the time period of interest are necessary to accurately quantify tidal exports of carbon species from salt marshes.
  • Article
    Uncertainty in United States coastal wetland greenhouse gas inventorying
    (IOP Science, 2018-11-12) Holmquist, James R. ; Windham-Myers, Lisamarie ; Bernal, Blanca ; Byrd, Kristin B. ; Crooks, Stephen ; Gonneea, Meagan E. ; Herold, Nate ; Knox, Sara H. ; Kroeger, Kevin D. ; McCombs, John ; Megonigal, J. Patrick ; Lu, Meng ; Morris, James T. ; Sutton-Grier, Ariana E. ; Troxler, Tiffany G.
    Coastal wetlands store carbon dioxide (CO2) and emit CO2 and methane (CH4) making them an important part of greenhouse gas (GHG) inventorying. In the contiguous United States (CONUS), a coastal wetland inventory was recently calculated by combining maps of wetland type and change with soil, biomass, and CH4 flux data from a literature review. We assess uncertainty in this developing carbon monitoring system to quantify confidence in the inventory process itself and to prioritize future research. We provide a value-added analysis by defining types and scales of uncertainty for assumptions, burial and emissions datasets, and wetland maps, simulating 10 000 iterations of a simplified version of the inventory, and performing a sensitivity analysis. Coastal wetlands were likely a source of net-CO2-equivalent (CO2e) emissions from 2006–2011. Although stable estuarine wetlands were likely a CO2e sink, this effect was counteracted by catastrophic soil losses in the Gulf Coast, and CH4 emissions from tidal freshwater wetlands. The direction and magnitude of total CONUS CO2e flux were most sensitive to uncertainty in emissions and burial data, and assumptions about how to calculate the inventory. Critical data uncertainties included CH4 emissions for stable freshwater wetlands and carbon burial rates for all coastal wetlands. Critical assumptions included the average depth of soil affected by erosion events, the method used to convert CH4 fluxes to CO2e, and the fraction of carbon lost to the atmosphere following an erosion event. The inventory was relatively insensitive to mapping uncertainties. Future versions could be improved by collecting additional data, especially the depth affected by loss events, and by better mapping salinity and inundation gradients relevant to key GHG fluxes. Social Media Abstract: US coastal wetlands were a recent and uncertain source of greenhouse gasses because of CH4 and erosion.
  • Article
    Natural climate solutions for the United States
    (American Association for the Advancement of Science, 2018-11-14) Fargione, Joseph E. ; Bassett, Steven ; Boucher, Timothy ; Bridgham, Scott D. ; Conant, Richard T. ; Cook-Patton, Susan C. ; Ellis, Peter W. ; Falcucci, Alessandra ; Fourqurean, James W. ; Gopalakrishna, Trisha ; Gu, Huan ; Henderson, Benjamin ; Hurteau, Matthew D. ; Kroeger, Kevin D. ; Kroeger, Timm ; Lark, Tyler J. ; Leavitt, Sara M. ; Lomax, Guy ; McDonald, Robert I. ; Megonigal, J. Patrick ; Miteva, Daniela A. ; Richardson, Curtis J. ; Sanderman, Jonathan ; Shoch, David ; Spawn, Seth A. ; Veldman, Joseph W. ; Williams, Christopher A. ; Woodbury, Peter B. ; Zganjar, Chris ; Baranski, Marci ; Elias, Patricia ; Houghton, Richard A. ; Landis, Emily ; McGlynn, Emily ; Schlesinger, William H. ; Siikamaki, Juha V. ; Sutton-Grier, Ariana E. ; Griscom, Bronson W.
    Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)—21 conservation, restoration, and improved land management interventions on natural and agricultural lands—to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year−1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year−1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.
  • Article
    Author Correction : Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States
    (Nature Publishing Group, 2018-10-09) Holmquist, James R. ; Windham-Myers, Lisamarie ; Bliss, Norman B. ; Crooks, Stephen ; Morris, James T. ; Megonigal, J. Patrick ; Troxler, Tiffany G. ; Weller, Donald ; Callaway, John ; Drexler, Judith ; Ferner, Matthew C. ; Gonneea, Meagan E. ; Kroeger, Kevin D. ; Schile-Beers, Lisa ; Woo, Isa ; Buffington, Kevin ; Breithaupt, Joshua ; Boyd, Brandon M. ; Brown, Lauren N. ; Dix, Nicole ; Hice, Lyndie ; Horton, Benjamin P. ; MacDonald, Glen M. ; Moyer, Ryan P. ; Reay, William ; Shaw, Timothy ; Smith, Erik ; Smoak, Joseph M. ; Sommerfield, Christopher K. ; Thorne, Karen ; Velinsky, David ; Watson, Elizabeth ; Wilson Grimes, Kristin ; Woodrey, Mark
    This Article corrects an error in Equation 1
  • Article
    Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States
    (Nature Publishing Group, 2018-06-21) Holmquist, James R. ; Windham-Myers, Lisamarie ; Bliss, Norman B. ; Crooks, Stephen ; Morris, James T. ; Megonigal, J. Patrick ; Troxler, Tiffany G. ; Weller, Donald ; Callaway, John ; Drexler, Judith ; Ferner, Matthew C. ; Gonneea, Meagan E. ; Kroeger, Kevin D. ; Schile-Beers, Lisa ; Woo, Isa ; Buffington, Kevin ; Breithaupt, Joshua ; Boyd, Brandon M. ; Brown, Lauren N. ; Dix, Nicole ; Hice, Lyndie ; Horton, Benjamin P. ; MacDonald, Glen M. ; Moyer, Ryan P. ; Reay, William ; Shaw, Timothy ; Smith, Erik ; Smoak, Joseph M. ; Sommerfield, Christopher K. ; Thorne, Karen ; Velinsky, David ; Watson, Elizabeth ; Wilson Grimes, Kristin ; Woodrey, Mark
    Tidal wetlands produce long-term soil organic carbon (C) stocks. Thus for carbon accounting purposes, we need accurate and precise information on the magnitude and spatial distribution of those stocks. We assembled and analyzed an unprecedented soil core dataset, and tested three strategies for mapping carbon stocks: applying the average value from the synthesis to mapped tidal wetlands, applying models fit using empirical data and applied using soil, vegetation and salinity maps, and relying on independently generated soil carbon maps. Soil carbon stocks were far lower on average and varied less spatially and with depth than stocks calculated from available soils maps. Further, variation in carbon density was not well-predicted based on climate, salinity, vegetation, or soil classes. Instead, the assembled dataset showed that carbon density across the conterminous united states (CONUS) was normally distributed, with a predictable range of observations. We identified the simplest strategy, applying mean carbon density (27.0 kg C m−3), as the best performing strategy, and conservatively estimated that the top meter of CONUS tidal wetland soil contains 0.72 petagrams C. This strategy could provide standardization in CONUS tidal carbon accounting until such a time as modeling and mapping advancements can quantitatively improve accuracy and precision.