Cellular Dynamics Program

Permanent URI for this collection

The Cellular Dynamics Program (CDP) at the MBL aims to accelerate the knowledge of basic biology and disease through the development and application of biophysical methods customized to shed light on life’s most essential processes.

CDP is composed of several independent laboratories, notably those with a specialization in imaging and cell physiology and biochemistry. Additionally the program houses the NIH:NCRR national resource, the BioCurrents Research Center. The CDP imaging component focuses on the architectural dynamics of living cells, which encompass the timely and coordinated assembly and disassembly of macromolecular structures essential for the proper functioning and differentiation of cells, the spatial and temporal organization of these structures, and their physiological and genetic control. The molecular physiology component, in pursuing studies of cell metabolism and transport biophysics, has pioneered the use of electrochemical sensors to define the chemical signatures surrounding living cells and tissues, opening insights to cell function from a distance.


Recent Submissions

Now showing 1 - 20 of 71
  • Article
    Mathematical modeling accurately predicts the dynamics and scaling of nuclear growth in discrete cytoplasmic volumes
    (Elsevier, 2021-10-22) Leech, Vivienne ; Hazel, James W. ; Gatlin, Jesse C. ; Lindsay, Alan E. ; Manhart, Angelika
    Scaling of nuclear size with cell size has been observed in many species and cell types. In this work we formulate a modeling framework based on the limiting component hypothesis. We derive a family of spatio-temporal mathematical models for nuclear size determination based on different transport and growth mechanisms. We analyse model properties and use in vitro experimental data to identify the most probable mechanism. This suggests that nuclear volume scales with cell volume and that a nucleus controls its import rate as it grows. We further test the model by comparing to data of early frog development, where rapid cell divisions set the relevant time scales.
  • Article
    Interplay of septin amphipathic helices in sensing membrane-curvature and filament bundling
    (American Society for Cell Biology, 2021-09-09) Woods, Benjamin L. ; Cannon, Kevin S. ; Vogt, Ellysa J. D. ; Crutchley, John M. ; Gladfelter, Amy S.
    The curvature of the membrane defines cell shape. Septins are GTP-binding proteins that assemble into heteromeric complexes and polymerize into filaments at areas of micron-scale membrane curvature. An amphipathic helix (AH) domain within the septin complex is necessary and sufficient for septins to preferentially assemble onto micron-scale curvature. Here we report that the nonessential fungal septin, Shs1, also has an AH domain capable of recognizing membrane curvature. In a septin mutant strain lacking a fully functional Cdc12 AH domain (cdc12-6), the C-terminal extension of Shs1, containing an AH domain, becomes essential. Additionally, we find that the Cdc12 AH domain is important for regulating septin filament bundling, suggesting septin AH domains have multiple, distinct functions and that bundling and membrane binding may be coordinately controlled.
  • Article
    Spatial variation of microtubule depolymerization in large asters
    (American Society for Cell Biology, 2021-04-19) Ishihara, Keisuke ; Decker, Franziska ; Caldas, Paulo ; Pelletier, James F. ; Loose, Martin ; Brugués, Jan ; Mitchison, Timothy J.
    Microtubule plus-end depolymerization rate is a potentially important target of physiological regulation, but it has been challenging to measure, so its role in spatial organization is poorly understood. Here we apply a method for tracking plus ends based on time difference imaging to measure depolymerization rates in large interphase asters growing in Xenopus egg extract. We observed strong spatial regulation of depolymerization rates, which were higher in the aster interior compared with the periphery, and much less regulation of polymerization or catastrophe rates. We interpret these data in terms of a limiting component model, where aster growth results in lower levels of soluble tubulin and microtubule-associated proteins (MAPs) in the interior cytosol compared with that at the periphery. The steady-state polymer fraction of tubulin was ∼30%, so tubulin is not strongly depleted in the aster interior. We propose that the limiting component for microtubule assembly is a MAP that inhibits depolymerization, and that egg asters are tuned to low microtubule density.
  • Article
    Microfluidic encapsulation of Xenopus laevis cell-free extracts using hydrogel photolithography
    (Cell Press, 2020-12-18) Geisterfer, Zachary M. ; Oakey, John ; Gatlin, Jesse C.
    Cell-free extract derived from the eggs of the African clawed frog Xenopus laevis is a well-established model system that has been used historically in bulk aliquots. Here, we describe a microfluidic approach for isolating discrete, biologically relevant volumes of cell-free extract, with more expansive and precise control of extract shape compared with extract-oil emulsions. This approach is useful for investigating the mechanics of intracellular processes affected by cell geometry or cytoplasmic volume, including organelle scaling and positioning mechanisms. For complete details on the use and execution of this protocol, please refer to Geisterfer et al. (2020).
  • Article
    The hierarchical assembly of septins revealed by high-speed AFM
    (Nature Research, 2020-10-08) Jiao, Fang ; Cannon, Kevin S. ; Lin, Yi-Chih ; Gladfelter, Amy S. ; Scheuring, Simon
    Septins are GTP-binding proteins involved in diverse cellular processes including division and membrane remodeling. Septins form linear, palindromic heteromeric complexes that can assemble in filaments and higher-order structures. Structural studies revealed various septin architectures, but questions concerning assembly-dynamics and -pathways persist. Here we used high-speed atomic force microscopy (HS-AFM) and kinetic modeling which allowed us to determine that septin filament assembly was a diffusion-driven process, while formation of higher-order structures was complex and involved self-templating. Slightly acidic pH and increased monovalent ion concentrations favor filament-assembly, -alignment and -pairing. Filament-alignment and -pairing further favored diffusion-driven assembly. Pairing is mediated by the septin N-termini face, and may occur symmetrically or staggered, likely important for the formation of higher-order structures of different shapes. Multilayered structures are templated by the morphology of the underlying layers. The septin C-termini face, namely the C-terminal extension of Cdc12, may be involved in membrane binding.
  • Article
    Phosphoregulation provides specificity to biomolecular condensates in the cell cycle and cell polarity
    (Rockefeller University Press, 2020-07-06) Gerbich, Therese M. ; McLaughlin, Grace A. ; Cassidy, Katelyn ; Gerber, Scott ; Adalsteinsson, David ; Gladfelter, Amy S.
    Biomolecular condensation is a way of organizing cytosol in which proteins and nucleic acids coassemble into compartments. In the multinucleate filamentous fungus Ashbya gossypii, the RNA-binding protein Whi3 regulates the cell cycle and cell polarity through forming macromolecular structures that behave like condensates. Whi3 has distinct spatial localizations and mRNA targets, making it a powerful model for how, when, and where specific identities are established for condensates. We identified residues on Whi3 that are differentially phosphorylated under specific conditions and generated mutants that ablate this regulation. This yielded separation of function alleles that were functional for either cell polarity or nuclear cycling but not both. This study shows that phosphorylation of individual residues on molecules in biomolecular condensates can provide specificity that gives rise to distinct functional identities in the same cell.
  • Article
    Variation in genome content and predatory phenotypes between Bdellovibrio sp. NC01 isolated from soil and B. bacteriovorus type strain HD100
    (Microbiology Society, 2019-12-01) Williams, Laura E. ; Cullen, Nicole ; DeGiorgis, Joseph A. ; Martinez, Karla J. ; Mellone, Justina ; Oser, Molly ; Wang, Jing ; Zhang, Ying
    Defining phenotypic and associated genotypic variation among Bdellovibrio may further our understanding of how this genus attacks and kills different Gram-negative bacteria. We isolated Bdellovibrio sp. NC01 from soil. Analysis of 16S rRNA gene sequences and average amino acid identity showed that NC01 belongs to a different species than the type species bacteriovorus. By clustering amino acid sequences from completely sequenced Bdellovibrio and comparing the resulting orthologue groups to a previously published analysis, we defined a ‘core genome’ of 778 protein-coding genes and identified four protein-coding genes that appeared to be missing only in NC01. To determine how horizontal gene transfer (HGT) may have impacted NC01 genome evolution, we performed genome-wide comparisons of Bdellovibrio nucleotide sequences, which indicated that eight NC01 genomic regions were likely acquired by HGT. To investigate how genome variation may impact predation, we compared protein-coding gene content between NC01 and the B. bacteriovorus type strain HD100, focusing on genes implicated as important in successful killing of prey. Of these, NC01 is missing ten genes that may play roles in lytic activity during predation. Compared to HD100, NC01 kills fewer tested prey strains and kills Escherichia coli ML35 less efficiently. NC01 causes a smaller log reduction in ML35, after which the prey population recovers and the NC01 population decreases. In addition, NC01 forms turbid plaques on lawns of E. coli ML35, in contrast to clear plaques formed by HD100. Linking phenotypic variation in interactions between Bdellovibrio and Gram-negative bacteria with underlying Bdellovibrio genome variation is valuable for understanding the ecological significance of predatory bacteria and evaluating their effectiveness in clinical applications.
  • Article
    Fungi in the Marine Environment: Open Questions and Unsolved Problems
    (American Society for Microbiology, 2019-03-05) Amend, Anthony ; Burgaud, Gaëtan ; Cunliffe, Michael ; Edgcomb, Virginia P. ; Ettinger, Cassandra L. ; Gutiérrez, M. H. ; Heitman, Joseph ; Hom, Erik F. Y. ; Ianiri, Giuseppe ; Jones, Adam C. ; Kagami, Maiko ; Picard, Kathryn T. ; Quandt, C. Alisha ; Raghukumar, Seshagiri ; Riquelme, Mertixell ; Stajich, Jason ; Vargas-Muñiz, José ; Walker, Allison K. ; Yarden, Oded ; Gladfelter, Amy S.
    Terrestrial fungi play critical roles in nutrient cycling and food webs and can shape macroorganism communities as parasites and mutualists. Although estimates for the number of fungal species on the planet range from 1.5 to over 5 million, likely fewer than 10% of fungi have been identified so far. To date, a relatively small percentage of described species are associated with marine environments, with ∼1,100 species retrieved exclusively from the marine environment. Nevertheless, fungi have been found in nearly every marine habitat explored, from the surface of the ocean to kilometers below ocean sediments. Fungi are hypothesized to contribute to phytoplankton population cycles and the biological carbon pump and are active in the chemistry of marine sediments. Many fungi have been identified as commensals or pathogens of marine animals (e.g., corals and sponges), plants, and algae. Despite their varied roles, remarkably little is known about the diversity of this major branch of eukaryotic life in marine ecosystems or their ecological functions. This perspective emerges from a Marine Fungi Workshop held in May 2018 at the Marine Biological Laboratory in Woods Hole, MA. We present the state of knowledge as well as the multitude of open questions regarding the diversity and function of fungi in the marine biosphere and geochemical cycles.
  • Article
    Colloid osmotic parameterization and measurement of subcellular crowding
    (American Society for Cell Biology, 2019-01-14) Mitchison, Timothy J.
    Crowding of the subcellular environment by macromolecules is thought to promote protein aggregation and phase separation. A challenge is how to parameterize the degree of crowding of the cell interior or artificial solutions that is relevant to these reactions. Here I review colloid osmotic pressure as a crowding metric. This pressure is generated by solutions of macromolecules in contact with pores that are permeable to water and ions but not macromolecules. It generates depletion forces that push macromolecules together in crowded solutions and thus promotes aggregation and phase separation. I discuss measurements of colloid osmotic pressure inside cells using the nucleus, the cytoplasmic gel, and fluorescence resonant energy transfer (FRET) biosensors as osmometers, which return a range of values from 1 to 20 kPa. I argue for a low value, 1–2 kPa, in frog eggs and perhaps more generally. This value is close to the linear range on concentration–pressure curves and is thus not crowded from an osmotic perspective. I discuss the implications of a low crowding pressure inside cells for phase separation biology, buffer design, and proteome evolution. I also discuss a pressure–tension model for nuclear shape, where colloid osmotic pressure generated by nuclear protein import inflates the nucleus.
  • Article
    An amphipathic helix enables septins to sense micrometer-scale membrane curvature
    (Rockefeller University Press, 2019-01-18) Cannon, Kevin S. ; Woods, Benjamin L. ; Crutchley, John M. ; Gladfelter, Amy S.
    Cell shape is well described by membrane curvature. Septins are filament-forming, GTP-binding proteins that assemble on positive, micrometer-scale curvatures. Here, we examine the molecular basis of curvature sensing by septins. We show that differences in affinity and the number of binding sites drive curvature-specific adsorption of septins. Moreover, we find septin assembly onto curved membranes is cooperative and show that geometry influences higher-order arrangement of septin filaments. Although septins must form polymers to stay associated with membranes, septin filaments do not have to span micrometers in length to sense curvature, as we find that single-septin complexes have curvature-dependent association rates. We trace this ability to an amphipathic helix (AH) located on the C-terminus of Cdc12. The AH domain is necessary and sufficient for curvature sensing both in vitro and in vivo. These data show that curvature sensing by septins operates at much smaller length scales than the micrometer curvatures being detected.
  • Article
    A size-invariant bud-duration timer enables robustness in yeast cell size control
    ( 2018-12-21) Allard, Corey A. H. ; Decker, Franziska ; Weiner, Orion ; Toettcher, Jared E. ; Graziano, Brian R.
    Cell populations across nearly all forms of life generally maintain a characteristic cell type-dependent size, but how size control is achieved has been a long-standing question. The G1/S boundary of the cell cycle serves as a major point of size control, and mechanisms operating here restrict passage of cells to Start if they are too small. In contrast, it is less clear how size is regulated post-Start, during S/G2/M. To gain further insight into post-Start size control, we prepared budding yeast that can be reversibly blocked from bud initiation. While blocked, cells continue to grow isotropically, increasing their volume by more than an order of magnitude over unperturbed cells. Upon release from their block, giant mothers reenter the cell cycle and their progeny rapidly return to the original unperturbed size. We found this behavior to be consistent with a size-invariant ‘timer’ specifying the duration of S/G2/M. These results indicate that yeast use at least two distinct mechanisms at different cell cycle phases to ensure size homeostasis.
  • Article
    Vegetation indices do not capture forest cover variation in Upland Siberian Larch Forests
    (MDPI AG, Basel, Switzerland, 2018-10-25) Loranty, Michael M. ; Davydov, Sergey P. ; Kropp, Heather ; Alexander, Heather D. ; Mack, Michelle C. ; Natali, Susan M. ; Zimov, Nikita S.
    Boreal forests are changing in response to climate, with potentially important feedbacks to regional and global climate through altered carbon cycle and albedo dynamics. These feedback processes will be affected by vegetation changes, and feedback strengths will largely rely on the spatial extent and timing of vegetation change. Satellite remote sensing is widely used to monitor vegetation dynamics, and vegetation indices (VIs) are frequently used to characterize spatial and temporal trends in vegetation productivity. In this study we combine field observations of larch forest cover across a 25 km2 upland landscape in northeastern Siberia with high-resolution satellite observations to determine how the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) are related to forest cover. Across 46 forest stands ranging from 0% to 90% larch canopy cover, we find either no change, or declines in NDVI and EVI derived from PlanetScope CubeSat and Landsat data with increasing forest cover. In conjunction with field observations of NDVI, these results indicate that understory vegetation likely exerts a strong influence on vegetation indices in these ecosystems. This suggests that positive decadal trends in NDVI in Siberian larch forests may correspond primarily to increases in understory productivity, or even to declines in forest cover. Consequently, positive NDVI trends may be associated with declines in terrestrial carbon storage and increases in albedo, rather than increases in carbon storage and decreases in albedo that are commonly assumed. Moreover, it is also likely that important ecological changes such as large changes in forest density or variable forest regrowth after fire are not captured by long-term NDVI trends.
  • Article
    Prey range and genome evolution of Halobacteriovorax marinus predatory bacteria from an estuary
    (American Society for Microbiology, 2018-01-10) Enos, Brett G. ; Anthony, Molly K. ; DeGiorgis, Joseph A. ; Williams, Laura E.
    Halobacteriovorax strains are saltwater-adapted predatory bacteria that attack Gram-negative bacteria and may play an important role in shaping microbial communities. To understand how Halobacteriovorax strains impact ecosystems and develop them as biocontrol agents, it is important to characterize variation in predation phenotypes and investigate Halobacteriovorax genome evolution. We isolated Halobacteriovorax marinus BE01 from an estuary in Rhode Island using Vibrio from the same site as prey. Small, fast-moving, attack-phase BE01 cells attach to and invade prey cells, consistent with the intraperiplasmic predation strategy of the H. marinus type strain, SJ. BE01 is a prey generalist, forming plaques on Vibrio strains from the estuary, Pseudomonas from soil, and Escherichia coli. Genome analysis revealed extremely high conservation of gene order and amino acid sequences between BE01 and SJ, suggesting strong selective pressure to maintain the genome in this H. marinus lineage. Despite this, we identified two regions of gene content difference that likely resulted from horizontal gene transfer. Analysis of modal codon usage frequencies supports the hypothesis that these regions were acquired from bacteria with different codon usage biases than H. marinus. In one of these regions, BE01 and SJ carry different genes associated with mobile genetic elements. Acquired functions in BE01 include the dnd operon, which encodes a pathway for DNA modification, and a suite of genes involved in membrane synthesis and regulation of gene expression that was likely acquired from another Halobacteriovorax lineage. This analysis provides further evidence that horizontal gene transfer plays an important role in genome evolution in predatory bacteria.
  • Article
    Quantification of collagen organization in histopathology samples using liquid crystal based polarization microscopy
    (The Optical Society, 2017-08-29) Keikhosravi, Adib ; Liu, Yuming ; Drifka, Cole ; Woo, Kaitlin M. ; Verma, Amitabh ; Oldenbourg, Rudolf ; Eliceiri, Kevin
    A number of histopathology studies have utilized the label free microscopy method of Second Harmonic Generation (SHG) to investigate collagen organization in disease onset and progression. Here we explored an alternative label free imaging approach, LC-PolScope that is based on liquid crystal based polarized light imaging. We demonstrated that this more accessible technology has the ability to visualize all fibers of interest and has a good to excellent correlation between SHG and LC-PolScope measurements in fibrillar collagen orientation and alignment. This study supports that LC-PolScope is a viable alternative to SHG for label free collagen organization measurements in thin histology sections.
  • Preprint
    Achiral symmetry breaking and positive Gaussian modulus lead to scalloped colloidal membranes
    ( 2016-11) Gibaud, Thomas ; Kaplan, C. Nadir ; Sharma, Prerna ; Ward, Andrew ; Zakhary, Mark J. ; Oldenbourg, Rudolf ; Meyer, Robert B. ; Kamien, Randall D. ; Powers, Thomas R. ; Dogic, Zvonimir
    In the presence of a non-adsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one rod-length thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study physics of thin elastic sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes comprised of mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes.
  • Article
    Mapping optical path length and image enhancement using quantitative orientation-independent differential interference contrast microscopy
    (SPIE, 2017-01-06) Shribak, Michael ; Larkin, Kieran G. ; Biggs, David
    We describe the principles of using orientation-independent differential interference contrast (OI-DIC) microscopy for mapping optical path length (OPL). Computation of the scalar two-dimensional OPL map is based on an experimentally received map of the OPL gradient vector field. Two methods of contrast enhancement for the OPL image, which reveal hardly visible structures and organelles, are presented. The results obtained can be used for reconstruction of a volume image. We have confirmed that a standard research grade light microscope equipped with the OI-DIC and 100×/1.3 NA objective lens, which was not specially selected for minimum wavefront and polarization aberrations, provides OPL noise level of ∼0.5  nm and lateral resolution if ∼300  nm at a wavelength of 546 nm. The new technology is the next step in the development of the DIC microscopy. It can replace standard DIC prisms on existing commercial microscope systems without modification. This will allow biological researchers that already have microscopy setups to expand the performance of their systems.
  • Article
    Living cells and dynamic molecules observed with the polarized light microscope : the legacy of Shinya Inoué
    (Marine Biological Laboratory, 2016-08) Tani, Tomomi ; Shribak, Michael ; Oldenbourg, Rudolf
    In 1948, Shinya Inoué arrived in the United States for graduate studies at Princeton. A year later he came to Woods Hole, starting a long tradition of summer research at the Marine Biological Laboratory (MBL), which quickly became Inoué's scientific home. Primed by his Japanese mentor, Katsuma Dan, Inoué followed Dan's mantra to work with healthy, living cells, on a fundamental problem (mitosis), with a unique tool set that he refined for precise and quantitative observations (polarized light microscopy), and a fresh and brilliant mind that was unafraid of challenging current dogma. Building on this potent combination, Inoué contributed landmark observations and concepts in cell biology, including the notion that there are dynamic, fine structures inside living cells, in which molecular assemblies such as mitotic spindle fibers exist in delicate equilibrium with their molecular building blocks suspended in the cytoplasm. In the late 1970s and 1980s, Inoué and others at the MBL were instrumental in conceiving video microscopy, a groundbreaking technique which married light microscopy and electronic imaging, ushering in a revolution in how we know and what we know about living cells and the molecular mechanisms of life. Here, we recount some of Inoué's accomplishments and describe how his legacy has shaped current activities in polarized light imaging at the MBL.
  • Article
    Multiplexed spectral imaging of 120 different fluorescent labels
    (Public Library of Science, 2016-07-08) Valm, Alex M. ; Oldenbourg, Rudolf ; Borisy, Gary G.
    The number of fluorescent labels that can unambiguously be distinguished in a single image when acquired through band pass filters is severely limited by the spectral overlap of available fluorophores. The recent development of spectral microscopy and the application of linear unmixing algorithms to spectrally recorded image data have allowed simultaneous imaging of fluorophores with highly overlapping spectra. However, the number of distinguishable fluorophores is still limited by the unavoidable decrease in signal to noise ratio when fluorescence signals are fractionated over multiple wavelength bins. Here we present a spectral image analysis algorithm to greatly expand the number of distinguishable objects labeled with binary combinations of fluorophores. Our algorithm utilizes a priori knowledge about labeled specimens and imposes a binary label constraint on the unmixing solution. We have applied our labeling and analysis strategy to identify microbes labeled by fluorescence in situ hybridization and here demonstrate the ability to distinguish 120 differently labeled microbes in a single image.
  • Article
    How nontraditional model systems can save us
    (American Society for Cell Biology, 2015-11-01) Gladfelter, Amy S.
    In this essay I would like to highlight how work in nontraditional model systems is an imperative for our society to prepare for problems we do not even know exist. I present examples of how discovery in nontraditional systems has been critical for fundamental advancement in cell biology. I also discuss how as a collective we might harvest both new questions and new solutions to old problems from the underexplored reservoir of diversity in the biosphere. With advancements in genomics, proteomics, and genome editing, it is now technically feasible for even a single research group to introduce a new model system. I aim here to inspire people to think beyond their familiar model systems and to press funding agencies to support the establishment of new model systems.
  • Article
    Polychromatic polarization microscope : bringing colors to a colorless world
    (Nature Publishing Group, 2015-11-27) Shribak, Michael
    Interference of two combined white light beams produces Newton colors if one of the beams is retarded relative to the other by from 400 nm to 2000 nm. In this case the corresponding interfering spectral components are added as two scalars at the beam combination. If the retardance is below 400 nm the two-beam interference produces grey shades only. The interference colors are widely used for analyzing birefringent samples in mineralogy. However, many of biological structures have retardance <100 nm. Therefore, cells and tissues under a regular polarization microscope are seen as grey image, which contrast disappears at certain orientations. Here we are proposing for the first time using vector interference of polarized light in which the full spectrum colors are created at retardance of several nanometers, with the hue determined by orientation of the birefringent structure. The previously colorless birefringent images of organelles, cells, and tissues become vividly colored. This approach can open up new possibilities for the study of biological specimens with weak birefringent structures, diagnosing various diseases, imaging low birefringent crystals, and creating new methods for controlling colors of the light beam.