Ecosystems Center
Permanent URI for this collection
The Ecosystems Center carries out research in ecosystems that range from the Arctic to the Antarctic, from Brazil to Martha’s Vineyard. In the Alaskan Arctic, scientists study the effect of warmer temperatures on tundra, stream and lake ecosystems. On the Arctic rivers of Eurasia, they measure how freshwater discharge is changing as the climate warms. On the western Antarctic peninsula, research focuses on the responses of the marine coastal ecosystem to rapid climate warming. In the western Amazon in Brazil, researchers assess how much the clearing of tropical forests will change the amount of greenhouse gas released into the atmosphere, while on the island of Martha’s Vineyard, scientists used controlled burns to restore coastal ecosystems. In central Massachusetts and in Abisko, Sweden, soil warming experiments are conducted to assess the forest’s response to climate warming. In northeastern Massachusetts, scientists study how changes in rural land use and urban development affect the flow of nutrients and organic matter into New England estuaries. In Boston Harbor, they measure the transfer of nitrogen from sediments to the water column as the harbor recovers from decades of sewage addition.
Browse
Browsing Ecosystems Center by Subject "Eutrophication"
Results Per Page
Sort Options
-
PreprintBarnegat Bay-Little Egg Harbor Estuary : case study of a highly eutrophic coastal bay system( 2006-09-26) Kennish, Michael J. ; Bricker, Suzanne B. ; Dennison, William C. ; Glibert, Patricia M. ; Livingston, Robert J. ; Moore, Kenneth A. ; Noble, Rachel T. ; Paerl, Hans W. ; Ramstack, Joy M. ; Seitzinger, Sybil P. ; Tomasko, David A. ; Valiela, IvanThe Barnegat Bay-Little Egg Harbor Estuary is classified here as a highly eutrophic estuary based on application of NOAA’s National Estuarine Eutrophication Assessment model. Because it is shallow, poorly flushed, and bordered by highly developed watershed areas, the estuary is particularly susceptible to the effects of nutrient loading. Most of this load (~50%) is from surface water inflow, but substantial fractions also originate from atmospheric deposition (~39%), and direct groundwater discharges (~11%). No point source inputs of nutrients exist in the Barnegat Bay watershed. Since 1980, all treated wastewater from the Ocean County Utilities Authority's regional wastewater treatment system has been discharged 1.6 km offshore in the Atlantic Ocean. Eutrophy causes problems in this system, including excessive micro- and macroalgal growth, harmful algal blooms (HABs), altered benthic invertebrate communities, impacted harvestable fisheries, and loss of essential habitat (i.e., seagrass and shellfish beds). Similar problems are evident in other shallow lagoonal estuaries of the Mid-Atlantic and South Atlantic regions. To effectively address nutrient enrichment problems in the Barnegat Bay-Little Egg Harbor Estuary, it is important to determine the nutrient loading levels that produce observable impacts in the system. It is also vital to continually monitor and assess priority indicators of water quality change and estuarine health. In addition, the application of a new generation of innovative models using web-based tools (e.g., NLOAD) will enable researchers and decision-makers to more successfully manage nutrient loads from the watershed. Finally, the implementation of stormwater retrofit projects should have beneficial effects on the system.
-
ArticleDiscontinuities in soil strength contribute to destabilization of nutrient‐enriched creeks(Ecological Society of America, 2018-08-20) Wigand, Cathleen ; Watson, Elizabeth ; Martin, Rose ; Johnson, David S. ; Warren, R. Scott ; Hanson, Alana ; Davey, Earl ; Johnson, Roxanne ; Deegan, Linda A.In a whole‐ecosystem, nutrient addition experiment in the Plum Island Sound Estuary (Massachusetts), we tested the effects of nitrogen enrichment on the carbon and nitrogen contents, respiration, and strength of marsh soils. We measured soil shear strength within and across vegetation zones. We found significantly higher soil percent organic matter, carbon, and nitrogen in the long‐term enriched marshes and higher soil respiration rates with longer duration of enrichment. The soil strength was similar in magnitude across depths and vegetation zones in the reference creeks, but showed signs of significant nutrient‐mediated alteration in enriched creeks where shear strength at rooting depths of the low marsh–high marsh interface zone was significantly lower than at the sub‐rooting depths or in the creek bank vegetation zone. To more closely examine the soil strength of the rooting (10–30 cm) and sub‐rooting (40–60 cm) depths in the interface and creek bank vegetation zones, we calculated a vertical shear strength differential between these depths. We found significantly lower differentials in shear strength (rooting depth < sub‐rooting depths) in the enriched creeks and in the interface zones. The discontinuities in the vertical and horizontal shear strength across the enriched marshes may contribute to observed fracturing and slumping occurring in the marsh systems. Tide gauge data also showed a pattern of rapid sea level rise for the period of the study, and changes in plant distribution patterns were indicative of increased flooding. Longer exposure times to nutrient‐enriched waters and increased hydraulic energy associated with sea level rise may exacerbate creek bank sloughing. Additional research is needed, however, to better understand the interactions of nutrient enrichment and sea level rise on soil shear strength and stability of tidal salt marshes.
-
ArticleEditorial: seagrasses under times of change(Frontiers Media, 2022-04-28) Winters, Gidon ; Teichberg, Mirta ; Reuter, Hauke ; Viana, Ines G. ; Willette, Demian A.Awareness of the ecological importance of seagrasses is growing due to recent attention to their role in carbon sequestration as a potential blue carbon sink (Fourqurean et al., 2012; Bedulli et al.), as well as their role in nutrient cycling (Romero et al., 2006), sediment stabilization (James et al., 2019), pathogen filtration (Lamb et al., 2017), and the formation of essential habitats for economically important marine species (Jackson et al., 2001; Jones et al.). Despite their importance and the increasing public and scientific awareness of seagrasses, simultaneous global (e.g., ocean warming, increase in frequency and severity of extreme events, introduction and spread of invasive species) and local (e.g., physical disturbances, eutrophication, and sedimentation) anthropogenic stressors continue to be the main causes behind the ongoing global decline of seagrass meadows (Orth et al., 2006; Waycott et al., 2009).
-
ArticleMacroalgal responses to experimental nutrient enrichment in shallow coastal waters : growth, internal nutrient pools, and isotopic signatures(Inter-Research, 2008-09-25) Teichberg, Mirta ; Fox, Sophia E. ; Aguila, Carolina ; Olsen, Ylva S. ; Valiela, IvanIncreased nutrient inputs to temperate coastal waters have led to increased occurrences of macroalgal blooms worldwide. To identify nutrients that are limiting to macroalgae and to determine whether different forms of these nutrients and long-term ambient nutrient conditions affect macroalgal response, we used in situ enrichment methods and tested the response of 2 bloom-forming species of macroalgae, Ulva lactuca and Gracilaria tikvahiae, from shallow estuaries of Waquoit Bay, Massachusetts, USA, that receive different land-derived N inputs. We enriched caged macroalgal fronds with nitrate, ammonium, phosphate, and N + P combinations, and measured growth, nutrient content, and δ15N signatures of fronds after 2 wk of incubation. In these estuaries, P did not limit growth, however, the 2 species differed in growth response to N additions. Growth of U. lactuca was greater in Childs River (CR), the estuary with higher nitrate inputs, than in Sage Lot Pond (SLP); growth in SLP increased with nitrate and ammonium enrichment. In contrast, growth of G. tikvahiae was greater in SLP than in CR, but had no growth response to N enrichment in either site. C and N contents differed initially between species and sites, and after nutrient enrichment. Final tissue % N increased and C:N decreased after nitrate and ammonium enrichment. δ15N values of the macroalgae demonstrated uptake of the experimental fertilizers, and a higher affinity and faster turnover of internal N pools with ammonium than nitrate enrichment in both species. We suggest that U. lactuca blooms in areas with both high nitrate and ammonium water column concentrations, and is more N-limited in oligotrophic waters where DIN levels are too low to sustain high growth rates. G. tikvahiae has a greater N storage capacity than U. lactuca, which may allow it to grow in less nutrient-rich waters.
-
PreprintMacrophyte abundance in Waquoit Bay : effects of land-derived nitrogen loads on seasonal and multi-year biomass patterns( 2008-01) Fox, Sophia E. ; Stieve, Erica ; Valiela, Ivan ; Hauxwell, Jennifer ; McClelland, James W.Anthropogenic inputs of nutrients to coastal waters have rapidly restructured coastal ecosystems. To examine the response of macrophyte communities to land-derived nitrogen loading, we measured macrophyte biomass monthly for six years in three estuaries subject to different nitrogen loads owing to different land uses on the watersheds. The set of estuaries sampled had nitrogen loads over the broad range of 12 to 601 kg N ha-1 y-1. Macrophyte biomass increased as nitrogen loads increased, but the response of individual taxa varied. Specifically, biomass of Cladophora vagabunda and Gracilaria tikvahiae increased significantly as nitrogen loads increased. The biomass of other macroalgal taxa tended to decrease with increasing load, and the relative proportion of these taxa to total macrophyte biomass also decreased. The seagrass, Zostera marina, disappeared from the higher loaded estuaries, but remained abundant in the estuary with the lowest load. Seasonal changes in macroalgal standing stock were also affected by nitrogen load, with larger fluctuations in biomass across the year and higher minimum biomass of macroalgae in the higher loaded estuaries. There were no significant changes in macrophyte biomass over the six years of this study, but there was a slight trend of increasing macroalgal biomass in the latter years. Macroalgal biomass was not related to irradiance or temperature, but Z. marina biomass was highest during the summer months when light and temperatures peak. Irradiance might, however, be a secondary limiting factor controlling macroalgal biomass in the higher loaded estuaries by restricting the depth of the macroalgal canopy. The relationship between the bloom-forming macroalgal species, C. vagabunda and G. tikvahiae, and nitrogen loads suggested a strong connection between development on watersheds and macroalgal blooms and loss of seagrasses. The influence of watershed land uses largely overwhelmed seasonal and inter-annual differences in standing stock of macrophytes in these temperate estuaries.
-
PreprintMummichog Fundulus heteroclitus responses to long-term, whole-ecosystem nutrient enrichment( 2013-05) Lockfield, Konner C. ; Fleeger, John W. ; Deegan, Linda A.The effects of eutrophication on coastal plants and sessile animals are becoming well known, but responses of mobile species are less well studied. Here, we link variation in abundance, biomass, body size, growth rate, and resource utilization in mummichogs (Fundulus heteroclitus) > 40 mm in length to experimental nutrient enrichment in Plum Island Sound, Massachusetts, USA. To mimic cultural eutrophication, dissolved fertilizer was released into replicate saltmarsh creeks on each rising tide throughout entire growing seasons. In the summer of the 6th year of enrichment, we released coded-wire tagged mummichogs into nutrient-enriched (n = 3733 fish) and reference (n = 3894 fish) creeks and recaptured them over the next two months. We found increased abundance (by 37%), biomass (58%), body size (8%), and herbivory (115%, measured as photosynthetic gut pigment content) in nutrient-enriched creeks, although body condition was unaffected. However, individual growth rates were 43% lower in nutrient-enriched creeks. Nutrient enrichment stimulated primary production causing a bottom-up enrichment of the food web, which fostered increased biomass and body size. However, the reduction in growth rate indicates an adverse consequence of long-term nutrient enrichment. This negative effect occurred in the absence of increased hypoxia in these highly tidally (4-m amplitude) flushed study creeks. The mummichog is an important predator/grazer in salt marshes, and nutrient-induced alterations in biomass or resource utilization will directly or indirectly affect lower trophic levels, including benthic algae, thereby impacting the 63 ecosystem-wide response to eutrophication.
-
ArticleNLOAD : an interactive, web-based modeling tool for nitrogen management in estuaries(Ecological Society of America, 2007-07) Bowen, Jennifer L. ; Ramstack, Joy M. ; Mazzilli, S. ; Valiela, IvanEutrophication of estuaries is an increasing global concern that requires development of new tools to identify causes, quantify conditions, and propose management options that address this environmental problem. Since eutrophication is often associated with increased inputs of land-derived nitrogen to estuaries, we developed NLOAD, a user-friendly, web-based tool that brings together six different published models that predict nitrogen loading to estuaries and two models that estimate nitrogen concentrations in coastal waters. Here we describe each of the models, demonstrate how NLOAD is designed to function, and then use the models in NLOAD to predict nitrogen loads to Barnegat Bay, New Jersey (USA). The four models that we used to estimate nitrogen loads to Barnegat Bay, when adjusted, all had similar results that matched well with measured values and indicated that Barnegat Bay receives roughly 26 kg N·ha−1·yr−1. Atmospheric deposition was the dominant source of nitrogen to Barnegat Bay, followed by fertilizer nitrogen. Wastewater in Barnegat Bay is diverted to an offshore outfall and contributes no nitrogen to the system. The NLOAD tool has an additional feature that allows managers to assess the effectiveness of a variety of management options to reduce nitrogen loads. We demonstrate this feature of NLOAD through simulations in which fertilizer inputs to the Barnegat Bay watershed are reduced. Even modest cutbacks in the use of fertilizers on agricultural fields and lawns can be shown to reduce the amount of N entering Barnegat Bay.
-
ArticlePlant nitrogen dynamics in fertilized and natural New England salt marshes : a paired 15N tracer study(Inter-Research, 2008-02-07) Drake, Deanne C. ; Peterson, Bruce J. ; Deegan, Linda A. ; Harris, Lora A. ; Miller, E. E. ; Warren, R. ScottWe examined the effects of increased nutrient availability on nitrogen (N) dynamics in dominant New England salt marsh plants (tall and stunted Spartina alterniflora and S. patens) using paired large-scale nutrient and 15NO3– tracer additions. This study is one component of a long-term, large-scale, salt marsh nutrient and trophic manipulation study (the Trophic Cascades and Interacting Control Processes in a Detritus-based Aquatic Ecosystem [TIDE] Project). We compared physiological variables of plants in fertilized (~17× ambient N and P in incoming tidal water) and reference marsh systems to quantify NO3– uptake and uptake efficiency, allocation of N to tissues, end-of-season N resorption, leaf litter quality and other potential responses to increased nutrient availability. Reference system plants sequestered ~24.5 g NO3-N ha–1 d–1 in aboveground pools during mid-summer, while fertilized plants sequestered ~140 g NO3-N ha–1 d–1. However, NO3– uptake efficiency (% of total incoming NO3-N sequestered aboveground) was higher in the reference system (16.8%) than in the fertilized system (2.6%), suggesting that our fertilization rate (~70 µM NO3– in incoming water) approaches or exceeds the uptake saturation point for this vegetation community. Leaf litter quality was clearly affected by N availability; N resorption efficiency was lower in all plants of the fertilized system; senesced leaves from the fertilized creek contained ~43% (tall S. alterniflora), 23% (stunted S. alterniflora) and 15% (S. patens) more N per unit biomass than reference creek leaves.
-
ArticleSalt marsh ecosystem biogeochemical responses to nutrient enrichment : a paired 15N tracer study(Ecological Society of America, 2009-09) Drake, Deanne C. ; Peterson, Bruce J. ; Galvan, Kari A. ; Deegan, Linda A. ; Hopkinson, Charles S. ; Johnson, J. Michael ; Koop-Jakobsen, Ketil ; LeMay, Lynsey E. ; Picard, ChristianWe compared processing and fate of dissolved NO3− in two New England salt marsh ecosystems, one receiving natural flood tide concentrations of 1–4 μmol NO3−/L and the other receiving experimentally fertilized flood tides containing 70–100 μmol NO3−/L. We conducted simultaneous 15NO3− (isotope) tracer additions from 23 to 28 July 2005 in the reference (8.4 ha) and fertilized (12.4 ha) systems to compare N dynamics and fate. Two full tidal cycles were intensively studied during the paired tracer additions. Resulting mass balances showed that essentially 100% (0.48–0.61 mol NO3-N·ha−1·h−1) of incoming NO3− was assimilated, dissimilated, sorbed, or sedimented (processed) within a few hours in the reference system when NO3− concentrations were 1.3–1.8 μmol/L. In contrast, only 50–60% of incoming NO3− was processed in the fertilized system when NO3− concentrations were 84–96 μmol/L; the remainder was exported in ebb tidewater. Gross NO3− processing was 40 times higher in the fertilized system at 19.34–24.67 mol NO3-N·ha−1·h−1. Dissimilatory nitrate reduction to ammonium was evident in both systems during the first 48 h of the tracer additions but <1% of incoming 15NO3− was exported as 15NH4+. Nitrification rates calculated by 15NO3− dilution were 6.05 and 4.46 mol·ha−1·h−1 in the fertilized system but could not be accurately calculated in the reference system due to rapid (<4 h) NO3− turnover. Over the five-day paired tracer addition, sediments sequestered a small fraction of incoming NO3−, although the efficiency of sequestration was 3.8% in the reference system and 0.7% in the fertilized system. Gross sediment N sequestration rates were similar at 13.5 and 12.6 mol·ha−1·d−1, respectively. Macrophyte NO3− uptake efficiency, based on tracer incorporation in aboveground tissues, was considerably higher in the reference system (16.8%) than the fertilized system (2.6%), although bulk uptake of NO3− by plants was lower in the reference system (1.75 mol NO3−·ha−1·d−1) than the fertilized system (10 mol NO3−·ha−1·d−1). Nitrogen processing efficiency decreased with NO3− load in all pools, suggesting that the nutrient processing capacity of the marsh ecosystem was exceeded in the fertilized marsh.
-
ArticleSaltmarsh plant responses to eutrophication(John Wiley & Sons, 2016-10-20) Johnson, David S. ; Warren, R. Scott ; Deegan, Linda A. ; Mozdzer, Thomas J.In saltmarsh plant communities, bottom-up pressure from nutrient enrichment is predicted to increase productivity, alter community structure, decrease biodiversity, and alter ecosystem functioning. Previous work supporting these predictions has been based largely on short-term, plot-level (e.g., 1–300 m2) studies, which may miss landscape-level phenomena that drive ecosystem-level responses. We implemented an ecosystem-scale, nine-year nutrient experiment to examine how saltmarsh plants respond to simulated conditions of coastal eutrophication. Our study differed from previous saltmarsh enrichment studies in that we applied realistic concentrations of nitrate (70–100 μM NO3−), the most common form of coastal nutrient enrichment, via tidal water at the ecosystem scale (~60,000 m2 creeksheds). Our enrichments added a total of 1,700 kg N·creek−1·yr−1, which increased N loading 10-fold vs. reference creeks (low-marsh, 171 g N·m−2·yr−1; high-marsh, 19 g N·m−2·yr−1). Nutrients increased the shoot mass and height of low marsh, tall Spartina alterniflora; however, declines in stem density resulted in no consistent increase in aboveground biomass. High-marsh plants S. patens and stunted S. alterniflora did not respond consistently to enrichment. Nutrient enrichment did not shift community structure, contrary to the prediction of nutrient-driven dominance of S. alterniflora and Distichlis spicata over S. patens. Our mild responses may differ from the results of previous studies for a number of reasons. First, the limited response of the high marsh may be explained by loading rates orders of magnitude lower than previous work. Low loading rates in the high marsh reflect infrequent inundation, arguing that inundation patterns must be considered when predicting responses to estuarine eutrophication. Additionally, we applied nitrate instead of the typically used ammonium, which is energetically favored over nitrate for plant uptake. Thus, the form of nitrogen enrichment used, not just N-load, may be important in predicting plant responses. Overall, our results suggest that when coastal eutrophication is dominated by nitrate and delivered via flooding tidal water, aboveground saltmarsh plant responses may be limited despite moderate-to-high water-column N concentrations. Furthermore, we argue that the methodological limitations of nutrient studies must be considered when using results to inform management decisions about wetlands.