Ecosystems Center
Permanent URI for this collection
The Ecosystems Center carries out research in ecosystems that range from the Arctic to the Antarctic, from Brazil to Martha’s Vineyard. In the Alaskan Arctic, scientists study the effect of warmer temperatures on tundra, stream and lake ecosystems. On the Arctic rivers of Eurasia, they measure how freshwater discharge is changing as the climate warms. On the western Antarctic peninsula, research focuses on the responses of the marine coastal ecosystem to rapid climate warming. In the western Amazon in Brazil, researchers assess how much the clearing of tropical forests will change the amount of greenhouse gas released into the atmosphere, while on the island of Martha’s Vineyard, scientists used controlled burns to restore coastal ecosystems. In central Massachusetts and in Abisko, Sweden, soil warming experiments are conducted to assess the forest’s response to climate warming. In northeastern Massachusetts, scientists study how changes in rural land use and urban development affect the flow of nutrients and organic matter into New England estuaries. In Boston Harbor, they measure the transfer of nitrogen from sediments to the water column as the harbor recovers from decades of sewage addition.
Browse
Browsing Ecosystems Center by Subject "Climate change"
Results Per Page
Sort Options
-
PreprintCarbon turnover in Alaskan tundra soils : effects of organic matter quality, temperature, moisture and fertilizer( 2006-02-15) Shaver, Gaius R. ; Giblin, Anne E. ; Nadelhoffer, Knute J. ; Thieler, K. K. ; Downs, M. R. ; Laundre, James A. ; Rastetter, Edward B.Soils of tundra and boreal ecosystems contain large organic matter stocks, typically as a layer of peat that blankets the underlying mineral soil. Despite the low productivity of northern vegetation, organic matter accumulates as peat because decomposition of plant litter is limited by low soil temperatures and often wet, anaerobic conditions (Heal et al. 1981, Jonasson et al. 2001). The total C storage in this northern peat is globally significant, accounting for about one third of the global soil C stock if one includes both tundras and boreal forests (Oechel and Billings 1992, Callaghan et al. 2004a). Soils of northern ecosystems also contain large amounts of organic N that is currently unavailable to plants, but is potentially available and could support higher productivity if mineralized (Shaver et al. 1991, Nadelhoffer et al. 1992, Weintraub and Schimel 2005 a). Controls on soil C stocks and turnover, therefore, are key issues for understanding C exchanges between northern ecosystems and the atmosphere. In this paper, we determine how C losses from peaty soil organic matter are related to its chemical composition, and how that composition changes as the organic matter decomposes. To address these issues we compared four soil organic matter types from three tundra ecosystems near Toolik Lake, Alaska. The comparison included both unfertilized soils and soils that were fertilized annually for eight years before sampling. Under laboratory conditions, we determined how temperature and moisture conditions affect C losses from these organic matter types. The experiment also allowed us to determine how the chemical composition of different types of organic matter changed over four simulated “seasons” of decomposition. The chemical composition or “quality” of soil organic matter is a useful predictor of C turnover (Ågren and Bosatta 1996) although a wide range of definitions and fractionation schemes have been used (Sollins et al. 1999, Harmon and Lajtha 1999). In general, high-quality organic matter is defined as that which is more readily processed by microbes and has a higher rate of decomposition. Fresh plant litter and newly-formed organic matter are expected to be of higher quality than older, more fully decomposed organic matter in which the more labile components have been metabolized (Aerts 1997, Berg 2000). Species composition of the vegetation may also have a strong influence on litter and organic matter “quality” (Berendse 1994, Cornelissen 1996, Hobbie 1996, Hobbie and Gough 2004). In this research we characterized organic matter quality with a widely used sequential extraction procedure (Ryan et al. 1990, Harmon and Lajtha 1999) that breaks soil organic matter into 4 fractions: (1) a “non-polar extractable” (NPE) fraction extracted in methylene chloride, (2) a “water-soluble” (WS) fraction extracted in boiling water, (3) an “acid-soluble’ (AS) fraction extracted in H2SO4, and (4) an “acid-insoluble” (AIS) residue.
-
ArticleClimate change and the presence of invasive species will threaten the persistence of the Mediterranean seagrass community(Elsevier, 2023-11-18) Beca-Carretero, Pedro P. ; Winters, Gidon ; Teichberg, Mirta C. ; Procaccini, Gabriele ; Schneekloth, Fabian ; Zambrano, Ramon H. ; Chiquillo, Kelcie L. ; Reuters, HaukeThe Mediterranean Sea has been experiencing rapid increases in temperature and salinity triggering its tropicalization. Additionally, its connection with the Red Sea has been favouring the establishment of non-native species. In this study, we investigated the effects of predicted climate change and the introduction of invasive seagrass species (Halophila stipulacea) on the native Mediterranean seagrass community (Posidonia oceanica and Cymodocea nodosa) by applying a novel ecological and spatial model with different configurations and parameter settings based on a Cellular Automata (CA). The proposed models use a discrete (stepwise) representation of space and time by executing deterministic and probabilistic rules that develop complex dynamic processes. Model applications were run under two climate scenarios (RCP 2.6 and RCP 8.5) projected from 2020 to 2100 in four different regions within the Mediterranean. Results indicate that the slow-growing P. oceanica will be highly vulnerable to climate change, suffering vast declines in its abundance. However, the results also show that western and colder areas of the Mediterranean Sea might represent refuge areas for this species. Cymodocea nodosa has been reported to exhibit resilience to predicted climate scenarios; however, it has shown habitat regression in the warmest predicted regions in the easternmost part of the basin. Our models indicate that H. stipulacea will thrive under projected climate scenarios, facilitating its spread across the basin. Also, H. stipulacea grew at the expense of C. nodosa, limiting the distribution of the latter, and eventually displacing this native species. Additionally, simulations demonstrated that areas from which P. oceanica meadows disappear would be partially covered by C. nodosa and H. stipulacea. These outcomes project that the Mediterranean seagrass community will experience a transition from long-lived, large and slow-growing species to small and fast-growing species as climate change progresses.
-
PreprintContrasting sensitivity to extreme winter warming events of dominant sub-Arctic heathland bryophyte and lichen species( 2010-12) Bjerke, Jarle W. ; Bokhorst, Stef ; Zielke, Matthias ; Callaghan, Terry V. ; Bowles, Francis W. ; Phoenix, Gareth K.Climate change in northern high latitudes is predicted to be greater in winter rather than summer, yet little is known about the effects of winter climate change on northern ecosystems. Among the unknowns are the effects of an increasing frequency of acute, short-lasting winter warming events. Such events can damage higher plants exposed to warm, then returning cold, temperatures after snow melt and it is not known how bryophytes and lichens, which are of considerable ecological importance in high-latitude ecosystems, are affected by such warming events. However, even physiological adaptations of these cryptogams to winter environments in general are poorly understood. Here we describe findings from a novel field experiment that uses heating from infrared lamps and soil warming cables to simulate acute mid-winter warming events in a sub-Arctic heath. In particular, we report the growing season responses of the dominant lichen, Peltigera aphthosa, and bryophyte, Hylocomium splendens, to warming events in three consecutive winters. While summertime photosynthetic performance of P. aphthosa was unaffected by the winter warming treatments, H. splendens showed significant reductions of net photosynthetic rates and growth rates (of up to 48% and 52% respectively). Negative effects were evident already during the summer following the first winter warming event. While the lichen develops without going through critical phenological stages during which vulnerable organs are produced, the moss has a seasonal rhythm, which includes initiation of growth of young, freeze-susceptible shoot apices in the early growing season; these might be damaged by breaking of dormancy during warm winter events. Synthesis. Different sensitivities of the bryophyte and lichen species were unexpected, and illustrate that very little is known about the winter ecology of bryophytes and lichens from cold biomes in general. In sharp contrast to summer warming experiments that show increased vascular plant biomass and reduced lichen biomass, these results demonstrate that acute climate events in mid-winter may be readily tolerated by lichens, in contrast to previously observed sensitivity of co-occurring dwarf shrubs, suggesting winter climate change may compensate for (or even reverse) predicted lichen declines resulting from summer warming.
-
PreprintContributions of long-term research and time-series observations to marine ecology and biogeochemistry( 2008-05-02) Ducklow, Hugh W. ; Doney, Scott C. ; Steinberg, Deborah K.Time-series observations form a critical element of oceanography. New interdisciplinary efforts launched in the past two decades complement the few earlier, longer-running time series in building a better, though still poorly-resolved, picture of lower-frequency ocean variability, the climate processes driving it, and its implications for foodweb dynamics, carbon storage and climate feedbacks. Time-series also enlarge our understanding of ecological processes and are integral for improving models of physical-biogeochemical-ecological ocean dynamics. The major time-series observatories go well beyond simple monitoring of core ocean properties, although that important activity forms the critical center of all time-series efforts. Modern ocean time series have major process and experimental components, entrain ancillary programs and have integrated modeling programs for deriving better understanding of the observations and the changing, three-dimensional ocean in which the observatories are embedded.
-
PreprintDecreased mass specific respiration under experimental warming is robust to the microbial biomass method employed( 2009-05) Bradford, Mark A. ; Wallenstein, Matthew D. ; Allison, Steven D. ; Treseder, Kathleen K. ; Frey, Serita D. ; Watts, Brian W. ; Davies, Christian A. ; Maddox, Thomas R. ; Melillo, Jerry M. ; Mohan, Jacqueline E. ; Reynolds, James F.Hartley et al. question whether reduction in Rmass, under experimental warming, arises because of the biomass method. We show the method they treat as independent yields the same result. We describe why the substrate-depletion hypothesis cannot alone explain observed responses, and urge caution in the interpretation of the seasonal data.
-
ArticleEcosystem responses to climate change at a Low Arctic and a High Arctic long-term research site(Springer, 2017-01-23) Hobbie, John E. ; Shaver, Gaius R. ; Rastetter, Edward B. ; Cherry, Jessica E. ; Goetz, Scott J. ; Guay, Kevin C. ; Gould, William A. ; Kling, George W.Long-term measurements of ecological effects of warming are often not statistically significant because of annual variability or signal noise. These are reduced in indicators that filter or reduce the noise around the signal and allow effects of climate warming to emerge. In this way, certain indicators act as medium pass filters integrating the signal over years-to-decades. In the Alaskan Arctic, the 25-year record of warming of air temperature revealed no significant trend, yet environmental and ecological changes prove that warming is affecting the ecosystem. The useful indicators are deep permafrost temperatures, vegetation and shrub biomass, satellite measures of canopy reflectance (NDVI), and chemical measures of soil weathering. In contrast, the 18-year record in the Greenland Arctic revealed an extremely high summer air-warming of 1.3°C/decade; the cover of some plant species increased while the cover of others decreased. Useful indicators of change are NDVI and the active layer thickness.
-
ArticleEditorial: seagrasses under times of change(Frontiers Media, 2022-04-28) Winters, Gidon ; Teichberg, Mirta ; Reuter, Hauke ; Viana, Ines G. ; Willette, Demian A.Awareness of the ecological importance of seagrasses is growing due to recent attention to their role in carbon sequestration as a potential blue carbon sink (Fourqurean et al., 2012; Bedulli et al.), as well as their role in nutrient cycling (Romero et al., 2006), sediment stabilization (James et al., 2019), pathogen filtration (Lamb et al., 2017), and the formation of essential habitats for economically important marine species (Jackson et al., 2001; Jones et al.). Despite their importance and the increasing public and scientific awareness of seagrasses, simultaneous global (e.g., ocean warming, increase in frequency and severity of extreme events, introduction and spread of invasive species) and local (e.g., physical disturbances, eutrophication, and sedimentation) anthropogenic stressors continue to be the main causes behind the ongoing global decline of seagrass meadows (Orth et al., 2006; Waycott et al., 2009).
-
ArticleEffect of historical changes in land use and climate on the water budget of an urbanizing watershed(American Geophysical Union, 2006-03-25) Claessens, Luc ; Hopkinson, Charles S. ; Rastetter, Edward B. ; Vallino, Joseph J.We assessed the effects of historical (1931-1998) changes in both land-use and climate on the water budget of a rapidly urbanizing watershed, Ipswich River basin (IRB), in northeastern Massachusetts. Water diversions and extremely low flow during summer are major issues in the IRB. Our study centers on a detailed analysis of diversions and a combined empirical/modeling treatment of evapotranspiration (ET) response to changes in climate and land-use. A detailed accounting of diversions showed that net diversions increased due to increases in water withdrawals (primarily ground water pumping) and export of sewage. Net diversions constitute a major component of runoff (20% of streamflow). Using a combination of empirical analysis and physically based modeling we related an increase in precipitation (2.7 mm/yr) and changes in other climate variables to an increase in ET (1.7 mm/yr). Simulations with a physically based water-balance model showed that the increase in ET could be attributed entirely to a change in climate, while the effect of land-use change was negligible. The land-use change effect was different from ET and runoff trends commonly associated with urbanization. We generalized these and other findings to predict future streamflow using climate change scenarios. Our study could serve as a framework for studying suburban watersheds, being the first study of a suburban watershed that addresses long-term effects of changes in both land-use and climate, and accounts for diversions and other unique aspects of suburban hydrology.
-
PreprintEffects of experimental warming and carbon addition on nitrate reduction and respiration in coastal sediments( 2015-04) Brin, Lindsay D. ; Giblin, Anne E. ; Rich, Jeremy J.Climate change may have differing effects on microbial processes that control coastal N availability. We conducted a microcosm experiment to explore effects of warming and carbon availability on nitrate reduction pathways in marine sediments. Sieved continental shelf sediments were incubated for 12 weeks under aerated seawater amended with nitrate (~50 μM), at winter (4°C) or summer (17°C) temperatures, with or without biweekly particulate organic C additions. Treatments increased diffusive oxygen consumption as expected, with somewhat higher effects of C addition compared to warming. Combined warming and C addition had the strongest effect on nitrate flux across the sediment water interface, with a complete switch early in the experiment from influx to sustained efflux. Supporting this result, vial incubations with added 15N-nitrate indicated that C addition stimulated potential rates of dissimilatory nitrate reduction to ammonium (DNRA), but not denitrification. Overall capacity for both denitrification and DNRA was reduced in warmed treatments, possibly reflecting C losses due to increased respiration with warming. Anammox potential rates were much lower than DNRA or denitrification, and were slightly negatively affected by warming or C addition. Overall, results indicate that warming and C addition increased ammonium production through remineralization and possibly DNRA. This stimulated nitrate production through nitrification, but without a comparable increase in nitrate consumption through denitrification. The response to C of potential DNRA rates over denitrification, along with a switch to nitrate efflux, raises the possibility that DNRA is an important and previously overlooked source of internal N cycling in shelf sediments.
-
ArticleEffects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China(American Geophysical Union, 2007-11-17) Ren, Wei ; Tian, Hanqin ; Liu, Mingliang ; Zhang, Chi ; Chen, Guangsheng ; Pan, Shufen ; Felzer, Benjamin S. ; Xu, XiaofengWe investigated the potential effects of elevated ozone (O3) along with climate variability, increasing CO2, and land use change on net primary productivity (NPP) and carbon storage in China's terrestrial ecosystems for the period 1961–2000 with a process-based Dynamic Land Ecosystem Model (DLEM) forced by the gridded data of historical tropospheric O3 and other environmental factors. The simulated results showed that elevated O3 could result in a mean 4.5% reduction in NPP and 0.9% reduction in total carbon storage nationwide from 1961 to 2000. The reduction of carbon storage varied from 0.1 Tg C to 312 Tg C (a decreased rate ranging from 0.2% to 6.9%) among plant functional types. The effects of tropospheric O3 on NPP were strongest in east-central China. Significant reductions in NPP occurred in northeastern and central China where a large proportion of cropland is distributed. The O3 effects on carbon fluxes and storage are dependent upon other environmental factors. Therefore direct and indirect effects of O3, as well as interactive effects with other environmental factors, should be taken into account in order to accurately assess the regional carbon budget in China. The results showed that the adverse influences of increasing O3 concentration across China on NPP could be an important disturbance factor on carbon storage in the near future, and the improvement of air quality in China could enhance the capability of China's terrestrial ecosystems to sequester more atmospheric CO2. Our estimation of O3 impacts on NPP and carbon storage in China, however, must be used with caution because of the limitation of historical tropospheric O3 data and other uncertainties associated with model parameters and field experiments.
-
PreprintGlobal economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone( 2006-01) Reilly, John M. ; Paltsev, Sergey ; Felzer, Benjamin S. ; Wang, X. ; Kicklighter, David W. ; Melillo, Jerry M. ; Prinn, Ronald G. ; Sarofim, Marcus C. ; Sokolov, Andrei P. ; Wang, C.Multiple environmental changes will have consequences for global vegetation. To the extent that crop yields and pasture and forest productivity are affected there can be important economic consequences. We examine the combined effects of changes in climate, increases in carbon dioxide, and changes in tropospheric ozone on crop, pasture, and forest lands and the consequences for the global and regional economies. We examine scenarios where there is limited or little effort to control these substances, and policy scenarios that limit emissions of CO2 and ozone precursors. We find the effects of climate and CO2 to be generally positive, and the effects of ozone to be very detrimental. Unless ozone is strongly controlled damage could offset CO2 and climate benefits. We find that resource allocation among sectors in the economy, and trade among countries, can strongly affect the estimate of economic effect in a country.
-
ArticleA gradient of nutrient enrichment reveals nonlinear impacts of fertilization on Arctic plant diversity and ecosystem function(John Wiley & Sons, 2017-03-22) Prager, Case M. ; Naeem, Shahid ; Boelman, Natalie ; Eitel, Jan U. H. ; Greaves, Heather ; Heskel, Mary ; Magney, Troy ; Menge, Duncan N. L. ; Vierling, Lee ; Griffin, Kevin L.Rapid environmental change at high latitudes is predicted to greatly alter the diversity, structure, and function of plant communities, resulting in changes in the pools and fluxes of nutrients. In Arctic tundra, increased nitrogen (N) and phosphorus (P) availability accompanying warming is known to impact plant diversity and ecosystem function; however, to date, most studies examining Arctic nutrient enrichment focus on the impact of relatively large (>25x estimated naturally occurring N enrichment) doses of nutrients on plant community composition and net primary productivity. To understand the impacts of Arctic nutrient enrichment, we examined plant community composition and the capacity for ecosystem function (net ecosystem exchange, ecosystem respiration, and gross primary production) across a gradient of experimental N and P addition expected to more closely approximate warming-induced fertilization. In addition, we compared our measured ecosystem CO2 flux data to a widely used Arctic ecosystem exchange model to investigate the ability to predict the capacity for CO2 exchange with nutrient addition. We observed declines in abundance-weighted plant diversity at low levels of nutrient enrichment, but species richness and the capacity for ecosystem carbon uptake did not change until the highest level of fertilization. When we compared our measured data to the model, we found that the model explained roughly 30%–50% of the variance in the observed data, depending on the flux variable, and the relationship weakened at high levels of enrichment. Our results suggest that while a relatively small amount of nutrient enrichment impacts plant diversity, only relatively large levels of fertilization—over an order of magnitude or more than warming-induced rates—significantly alter the capacity for tundra CO2 exchange. Overall, our findings highlight the value of measuring and modeling the impacts of a nutrient enrichment gradient, as warming-related nutrient availability may impact ecosystems differently than single-level fertilization experiments.
-
ArticleHigher Temperature Sensitivity of Ecosystem Respiration in Low Marsh Compared to High Elevation Marsh Ecosystems(American Geophysical Union, 2022-10-22) Carey, Joanna C. ; Kroeger, Kevin D. ; Tang, JianwuSalt marsh habitats contain some of the highest quantities of soil organic carbon (C) per unit area, but increasing anthropogenic stressors threaten their ability to maintain themselves as large C reservoirs in some regions. We quantify rates of C gas exchange (methane [CH4] and carbon dioxide [CO2]) monthly across a 16‐month period from a low nitrogen “reference” salt marsh on Cape Cod in New England using static chambers. While the summer period is the most dynamic period of marsh C gas exchange, we observed substantial fluxes in the early summer through late fall, highlighting the importance of including shoulder seasons in studies of marsh C exchange. We estimate annual ecosystem respiration between 108 and 252 g C m−2 yr−1, which varied based on temperature and elevation. This flux is lower than in other nearby marshes, which we attribute to the frequently inundated, microtidal nature of the site, resulting in the majority of respired CO2 being exported via lateral, not vertical, fluxes from this marsh. We observed significantly higher temperature sensitivity from the low elevation of the marsh compared to the high marsh. Recent acceleration in the rate of sea level rise is leading to a well‐documented expansion of low marsh into high marsh vegetation zones in this marsh system and others in the region. While rates of C burial are higher in the low marsh compared to the high marsh, the higher temperature sensitivity of respiration in the low marsh may diminish the longevity of marsh C stocks with climate warming.
-
PreprintImpacts of extreme winter warming events on litter decomposition in a sub-Arctic heathland( 2009-12-17) Bokhorst, Stef ; Bjerke, Jarle W. ; Melillo, Jerry M. ; Callaghan, Terry V. ; Phoenix, Gareth K.Arctic climate change is expected to lead to a greater frequency of extreme winter warming events. During these events, temperatures rapidly increase to well above 0ºC for a number of days, which can lead to snow melt at the landscape scale, loss of insulating snow cover and warming of soils. However, upon return of cold ambient temperatures, soils can freeze deeper and may experience more freeze-thaw cycles due to the absence of a buffering snow layer. Such loss of snow cover and changes in soil temperatures may be critical for litter decomposition since a stable soil microclimate during winter (facilitated by snow cover) allows activity of soil organisms. Indeed, a substantial part of fresh litter decomposition may occur in winter. However, the impacts of extreme winter warming events on soil processes such as decomposition have never before been investigated. With this study we quantify the impacts of winter warming events on fresh litter decomposition using field simulations and lab studies. Winter warming events were simulated in sub-Arctic heathland using infrared heating lamps and soil warming cables during March (typically the period of maximum snow depth) in three consecutive years of 2007, 2008, and 2009. During the winters of 2008 and 2009, simulations were also run in January (typically a period of shallow snow cover) on separate plots. The lab study included soil cores with and without fresh litter subjected to winter warming simulations in climate chambers. Litter decomposition of common plant species was unaffected by winter warming events simulated either in the lab (litter of Betula pubescens ssp. czerepanovii), or field (litter of Vaccinium vitis-idaea, and B. pubescens ssp. czerepanovii) with the exception of Vaccinium myrtillus (a common deciduous dwarf shrub) that showed less mass loss in response to winter warming events. Soil CO2 efflux measured in the lab study was (as expected) highly responsive to winter warming events but surprisingly fresh litter decomposition was not. Most fresh litter mass loss in the lab occurred during the first 3-4 weeks (simulating the period after litter fall). In contrast to past understanding, this suggests that winter decomposition of fresh litter is almost non-existent and observations of substantial mass loss across the cold season seen here and in other studies may result from leaching in autumn, prior to the onset of “true” winter. Further, our findings surprisingly suggest that extreme winter warming events do not affect fresh litter decomposition.
-
PreprintImportance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems( 2005-10-07) Euskirchen, Eugenie ; McGuire, A. David ; Kicklighter, David W. ; Zhuang, Qianlai ; Clein, Joy S. ; Dargaville, R. J. ; Dye, D. G. ; Kimball, John S. ; McDonald, Kyle C. ; Melillo, Jerry M. ; Romanovsky, Vladimir ; Smith, N. V.In terrestrial high-latitude regions, observations indicate recent changes in snow cover, permafrost, and soil freeze-thaw transitions due to climate change. These modifications may result in temporal shifts in the growing season and the associated rates of terrestrial productivity. Changes in productivity will influence the ability of these ecosystems to sequester atmospheric CO2. We use the Terrestrial Ecosystem Model (TEM), which simulates the soil thermal regime, in addition to terrestrial carbon, nitrogen and water dynamics, to explore these issues over the years 1960-2100 in extratropical regions (30°-90°N). Our model simulations show decreases in snow cover and permafrost stability from 1960 to 2100. Decreases in snow cover agree well with NOAA satellite observations collected between the years 1972-2000, with Pearson rank correlation coefficients between 0.58-0.65. Model analyses also indicate a trend towards an earlier thaw date of frozen soils and the onset of the growing season in the spring by approximately 2-4 days from 1988-2000. Between 1988 and 2000, satellite records yield a slightly stronger trend in thaw and the onset of the growing season, averaging between 5-8 days earlier. In both the TEM simulations and satellite records, trends in day of freeze in the autumn are weaker, such that overall increases in growing season length are due primarily to earlier thaw. Although regions with the longest snow cover duration displayed the greatest increase in growing season length, these regions maintained smaller increases in productivity and heterotrophic respiration than those regions with shorter duration of snow cover and less of an increase in growing season length. Concurrent with increases in growing season length, we found a reduction in soil carbon and increases in vegetation carbon, with greatest losses of soil carbon occurring in those areas with more vegetation, but simulations also suggest that this trend could reverse in the future. Our results reveal noteworthy changes in snow, permafrost, growing season length, productivity, and net carbon uptake, indicating that prediction of terrestrial carbon dynamics from one decade to the next will require that large-scale models adequately take into account the corresponding changes in soil thermal regimes.
-
PreprintIncident radiation and the allocation of nitrogen within Arctic plant canopies : implications for predicting gross primary productivity( 2012-01) Street, Lorna E. ; Shaver, Gaius R. ; Rastetter, Edward B. ; van Wijk, Mark T. ; Kaye, Brooke A. ; Williams, MathewArctic vegetation is characterized by high spatial variability in plant functional type (PFT) composition and gross primary productivity (P). Despite this variability, the two main drivers of P in sub-Arctic tundra are leaf area index (LT) and total foliar nitrogen (NT). LT and NT have been shown to be tightly coupled across PFTs in sub-Arctic tundra vegetation, which simplifies up-scaling by allowing quantification of the main drivers of P from remotely sensed LT. Our objective was to test the LT–NT relationship across multiple Arctic latitudes and to assess LT as a predictor of P for the pan-Arctic. Including PFT-specific parameters in models of LT–NT coupling provided only incremental improvements in model fit, but significant improvements were gained from including site-specific parameters. The degree of curvature in the LT–NT relationship, controlled by a fitted canopy nitrogen extinction co-efficient, was negatively related to average levels of diffuse radiation at a site. This is consistent with theoretical predictions of more uniform vertical canopy N distributions under diffuse light conditions. Higher latitude sites had higher average leaf N content by mass (NM), and we show for the first time that LT–NT coupling is achieved across latitudes via canopy-scale trade-offs between NM and leaf mass per unit leaf area (LM). Site-specific parameters provided small but significant improvements in models of P based on LT and moss cover. Our results suggest that differences in LT–NT coupling between sites could be used to improve pan-Arctic models of P and we provide unique evidence that prevailing radiation conditions can significantly affect N allocation over regional scales.
-
ArticleInsights and issues with simulating terrestrial DOC loading of Arctic river networks(Ecological Society of America, 2013-12) Kicklighter, David W. ; Hayes, Daniel J. ; McClelland, James W. ; Peterson, Bruce J. ; McGuire, A. David ; Melillo, Jerry M.Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to hydrology. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that, over the 20th century, the pan-Arctic watershed has contributed, on average, 32 Tg C/yr of DOC to river networks emptying into the Arctic Ocean with most of the DOC coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of climate-induced increases in water yield. These increases have been offset by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to Arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both offset and enhanced concurrent effects on hydrology to influence terrestrial DOC loading and may be changing the relative importance of terrestrial carbon dynamics on this carbon flux. Improvements in simulating terrestrial DOC loading to pan-Arctic rivers in the future will require better information on the production and consumption of DOC within the soil profile, the transfer of DOC from land to headwater streams, the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.
-
ArticleInteraction between pollution and climate change augments ecological risk to a coastal ecosystem(Taylor & Francis, 2018-07-31) Lu, Yonglong ; Wang, Ruoshi ; Shi, Yajuan ; Su, Chao ; Yuan, Jingjing ; Johnson, Andrew C. ; Jenkins, Alan ; Ferrier, Robert C. ; Chen, Deliang ; Tian, Hanqin ; Melillo, Jerry M. ; Song, Shuai ; Ellison, Aaron M.Pollution and climate change are among the most challenging issues for countries with developing economies, but we know little about the ecological risks that result when these pressures occur together. We explored direct effects of, and interactions between, environmental pollution and climate change on ecosystem health in the Bohai Sea region of Northern China. We developed an integrated approach to assess ecological risks to this region under four scenarios of climate change. Although ecological risks to the system from pollution alone have been declining, interactions between pollution and climate change have enhanced ecological risks to this coastal/marine ecosystem. Our results suggest that current policies focused strictly on pollution control alone should be changed to take into account the interactive effects of climate change so as to better forecast and manage potential ecological risks.
-
ArticleIntraspecific variation in phenology offers resilience to climate change for Eriophorum vaginatum(Canadian Science Publishing, 2021-05-19) Parker, Thomas C. ; Unger, Steven L. ; Moody, Michael L. ; Tang, Jianwu ; Fetcher, NedThe phenology of Arctic plants is an important determinant of the pattern of carbon uptake and may be highly sensitive to continued rapid climate change. Eriophorum vaginatum L. (Cyperaceae) has a disproportionate influence over ecosystem processes in moist acidic tundra, but it is unclear whether its growth and phenology will remain competitive in the future. We investigated whether northern tundra ecotypes of E. vaginatum could extend their growing season in response to direct warming and transplanting into southern ecosystems. At the same time, we examined whether southern ecotypes could adjust their growth patterns in order to thrive further north, should they disperse quickly enough. Detailed phenology measurements across three reciprocal transplant gardens over a 2-year period showed that some northern ecotypes were capable of growing for longer when conditions were favourable, but their biomass and growing season length was still shorter than those of the southern ecotype. Southern ecotypes retained large leaf length when transplanted north and mirrored the growing season length better than the others, mainly owing to immediate green-up after snowmelt. All ecotypes retained the same senescence timing, regardless of environment, indicating a strong genetic control. Eriophorum vaginatum may remain competitive in a warming world if southern ecotypes can migrate north.
-
ArticleLandscape genomics provides evidence of ecotypic adaptation and a barrier to gene flow at treeline for the arctic foundation species Eriophorum vaginatum0(Frontiers Media, 2022-03-24) Stunz, Elizabeth ; Fetcher, Ned ; Lavretsky, Philip ; Mohl, Jonathon E. ; Tang, Jianwu ; Moody, Michael L.Global climate change has resulted in geographic range shifts of flora and fauna at a global scale. Extreme environments, like the Arctic, are seeing some of the most pronounced changes. This region covers 14% of the Earth’s land area, and while many arctic species are widespread, understanding ecotypic variation at the genomic level will be important for elucidating how range shifts will affect ecological processes. Tussock cottongrass (Eriophorum vaginatum L.) is a foundation species of the moist acidic tundra, whose potential decline due to competition from shrubs may affect ecosystem stability in the Arctic. We used double-digest Restriction Site-Associated DNA sequencing to identify genomic variation in 273 individuals of E. vaginatum from 17 sites along a latitudinal gradient in north central Alaska. These sites have been part of 30 + years of ecological research and are inclusive of a region that was part of the Beringian refugium. The data analyses included genomic population structure, demographic models, and genotype by environment association. Genome-wide SNP investigation revealed environmentally associated variation and population structure across the sampled range of E. vaginatum, including a genetic break between populations north and south of treeline. This structure is likely the result of subrefugial isolation, contemporary isolation by resistance, and adaptation. Forty-five candidate loci were identified with genotype-environment association (GEA) analyses, with most identified genes related to abiotic stress. Our results support a hypothesis of limited gene flow based on spatial and environmental factors for E. vaginatum, which in combination with life history traits could limit range expansion of southern ecotypes northward as the tundra warms. This has implications for lower competitive attributes of northern plants of this foundation species likely resulting in changes in ecosystem productivity.