Ecosystems Center
Permanent URI for this collection
The Ecosystems Center carries out research in ecosystems that range from the Arctic to the Antarctic, from Brazil to Martha’s Vineyard. In the Alaskan Arctic, scientists study the effect of warmer temperatures on tundra, stream and lake ecosystems. On the Arctic rivers of Eurasia, they measure how freshwater discharge is changing as the climate warms. On the western Antarctic peninsula, research focuses on the responses of the marine coastal ecosystem to rapid climate warming. In the western Amazon in Brazil, researchers assess how much the clearing of tropical forests will change the amount of greenhouse gas released into the atmosphere, while on the island of Martha’s Vineyard, scientists used controlled burns to restore coastal ecosystems. In central Massachusetts and in Abisko, Sweden, soil warming experiments are conducted to assess the forest’s response to climate warming. In northeastern Massachusetts, scientists study how changes in rural land use and urban development affect the flow of nutrients and organic matter into New England estuaries. In Boston Harbor, they measure the transfer of nitrogen from sediments to the water column as the harbor recovers from decades of sewage addition.
Browse
Browsing Ecosystems Center by Subject "Arctic tundra"
Results Per Page
Sort Options
-
PreprintDepleted 15N in hydrolysable-N of arctic soils and its implication for mycorrhizal fungi–plant interaction( 2009-08) Yano, Yuriko ; Shaver, Gaius R. ; Giblin, Anne E. ; Rastetter, Edward B.Uptake of nitrogen (N) via root-mycorrhizal associations accounts for a significant portion of total N supply to many vascular plants. Using stable isotope ratios (δ15N) and the mass balance among N pools of plants, fungal tissues, and soils, a number of efforts have been made in recent years to quantify the flux of N from mycorrhizal fungi to host plants. Current estimates of this flux for arctic tundra ecosystems rely on the untested assumption that the δ15N of labile organic N taken up by the fungi is approximately the same as the δ15N of bulk soil. We report here hydrolysable amino acids are more depleted in 15N relative to hydrolysable ammonium and amino sugars in arctic tundra soils near Toolik Lake, Alaska, USA. We demonstrate, using a case study, that recognizing the depletion in 15N for hydrolysable amino acids (δ15N = -5.6 ‰ on average) would alter recent estimates of N flux between mycorrhizal fungi and host plants in an arctic tundra ecosystem.
-
ArticleEcotypic differences in the phenology of the tundra species Eriophorum vaginatum reflect sites of origin(John Wiley & Sons, 2017-10-19) Parker, Thomas C. ; Tang, Jianwu ; Clark, Mahalia B. ; Moody, Michael L. ; Fetcher, NedEriophorum vaginatum is a tussock-forming sedge that contributes significantly to the structure and primary productivity of moist acidic tussock tundra. Locally adapted populations (ecotypes) have been identified across the geographical distribution of E. vaginatum; however, little is known about how their growth and phenology differ over the course of a growing season. The growing season is short in the Arctic and therefore exerts a strong selection pressure on tundra species. This raises the hypothesis that the phenology of arctic species may be poorly adapted if the timing and length of the growing season change. Mature E. vaginatum tussocks from across a latitudinal gradient (65–70°N) were transplanted into a common garden at a central location (Toolik Lake, 68°38′N, 149°36′W) where half were warmed using open-top chambers. Over two growing seasons (2015 and 2016), leaf length was measured weekly to track growth rates, timing of senescence, and biomass accumulation. Growth rates were similar across ecotypes and between years and were not affected by warming. However, southern populations accumulated significantly more biomass, largely because they started to senesce later. In 2016, peak biomass and senescence of most populations occurred later than in 2015, probably induced by colder weather at the beginning of the growing season in 2016, which caused a delayed start to growth. The finish was delayed as well. Differences in phenology between populations were largely retained between years, suggesting that the amount of time that these ecotypes grow has been selected by the length of the growing seasons at their respective home sites. As potential growing seasons lengthen, E. vaginatum may be unable to respond appropriately as a result of genetic control and may have reduced fitness in the rapidly warming Arctic tundra.
-
PreprintLong-term release of carbon dioxide from Arctic tundra ecosystems in Alaska( 2016-11) Euskirchen, Eugenie ; Bret-Harte, M. Syndonia ; Shaver, Gaius R. ; Edgar, Colin W. ; Romanovsky, VladimirReleases of the greenhouse gases carbon dioxide (CO2) and methane (CH4) from thawing permafrost are expected to be among the largest feedbacks to climate from arctic ecosystems. However, the current net carbon (C) balance of terrestrial arctic ecosystems is unknown. Recent studies suggest that these ecosystems are sources, sinks, or approximately in balance at present. This uncertainty arises because there are few long-term continuous measurements of arctic tundra CO2 fluxes over the full annual cycle. Here, we describe a pattern of CO2 loss based on the longest continuous record of direct measurements of CO2 fluxes in the Alaskan Arctic, from two representative tundra ecosystems, wet sedge and heath tundra. We also report on a shorter time series of continuous measurements from a third ecosystem, tussock tundra. The amount of CO2 loss from both heath and wet sedge ecosystems was related to the timing of freeze-up of the soil active layer in the fall. Wet sedge tundra lost the most CO2 during the anomalously warm autumn periods of September – December 2013 - 2015, with CH4 emissions contributing little to the overall C budget. Losses of C translated to approximately 4.1% and 1.4% of the total soil C stocks in active layer of the wet sedge and heath tundra, respectively, from 2008 – 2015. Increases in air temperature and soil temperatures at all depths may trigger a new trajectory of CO2 release, which will be a significant feedback to further warming if it is representative of larger areas of the Arctic.
-
ArticleModel responses to CO(2) and warming are underestimated without explicit representation of Arctic small-mammal grazing(Ecological Society of America, 2021-10-17) Rastetter, Edward B. ; Griffin, Kevin L. ; Rowe, Rebecca J. ; Gough, Laura ; McLaren, Jennie ; Boelman, NatalieWe use a simple model of coupled carbon and nitrogen cycles in terrestrial ecosystems to examine how “explicitly representing grazers” vs. “having grazer effects implicitly aggregated in with other biogeochemical processes in the model” alters predicted responses to elevated carbon dioxide and warming. The aggregated approach can affect model predictions because grazer-mediated processes can respond differently to changes in climate compared with the processes with which they are typically aggregated. We use small-mammal grazers in a tundra as an example and find that the typical three-to-four-year cycling frequency is too fast for the effects of cycle peaks and troughs to be fully manifested in the ecosystem biogeochemistry. We conclude that implicitly aggregating the effects of small-mammal grazers with other processes results in an underestimation of ecosystem response to climate change, relative to estimations in which the grazer effects are explicitly represented. The magnitude of this underestimation increases with grazer density. We therefore recommend that grazing effects be incorporated explicitly when applying models of ecosystem response to global change.
-
ArticleN-15 in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra(Ecological Society of America, 2006-04) Hobbie, John E. ; Hobbie, Erik A.When soil nitrogen is in short supply, most terrestrial plants form symbioses with fungi (mycorrhizae): hyphae take up soil nitrogen, transport it into plant roots, and receive plant sugars in return. In ecosystems, the transfers within the pathway fractionate nitrogen isotopes so that the natural abundance of N-15 in fungi differs from that in their host plants by as much as 12‰. Here we present a new method to quantify carbon and nitrogen fluxes in the symbiosis based on the fractionation against N-15 during transfer of nitrogen from fungi to plant roots. We tested this method, which is based on the mass balance of N-15, with data from arctic Alaska where the nitrogen cycle is well studied. Mycorrhizal fungi provided 61–86% of the nitrogen in plants; plants provided 8–17% of their photosynthetic carbon to the fungi for growth and respiration. This method of analysis avoids the disturbance of the soil–microbe–root relationship caused by collecting samples, mixing the soil, or changing substrate concentrations. This analytical technique also can be applied to other nitrogen-limited ecosystems, such as many temperate and boreal forests, to quantify the importance for terrestrial carbon and nitrogen cycling of nutrient transfers mediated by mycorrhizae at the plant–soil interface.
-
ArticleOptical instruments for measuring leaf area index in low vegetation : application in Arctic ecosystems(Ecological Society of America, 2005-08) van Wijk, Mark T. ; Williams, MathewLeaf area index (LAI) is a powerful diagnostic of plant productivity. Despite the fact that many methods have been developed to quantify LAI, both directly and indirectly, leaf area index remains difficult to quantify accurately, owing to large spatial and temporal variability. The gap-fraction technique is widely used to estimate the LAI indirectly. However, for low-stature vegetation, the gap-fraction sensor either cannot get totally underneath the plant canopy, thereby missing part of the leaf area present, or is too close to the individual leaves of the canopy, which leads to a large distortion of the LAI estimate. We set out to develop a methodology for easy and accurate nondestructive assessment of the variability of LAI in low-stature vegetation. We developed and tested the methodology in an arctic landscape close to Abisko, Sweden. The LAI of arctic vegetation could be estimated accurately and rapidly by combining field measurements of canopy reflectance (NDVI) and light penetration through the canopy (gap-fraction analysis using a LI-COR LAI-2000). By combining the two methodologies, the limitations of each could be circumvented, and a significantly increased accuracy of the LAI estimates was obtained. The combination of an NDVI sensor for sparser vegetation and a LAI-2000 for denser vegetation could explain 81% of the variance of LAI measured by destructive harvest. We used the method to quantify the spatial variability and the associated uncertainty of leaf area index in a small catchment area.
-
ArticlePlant functional types do not predict biomass responses to removal and fertilization in Alaskan tussock tundra(John Wiley & Sons, 2008-04-15) Bret-Harte, M. Syndonia ; Mack, Michelle C. ; Goldsmith, Gregory R. ; Sloan, Daniel B. ; DeMarco, Jennie ; Shaver, Gaius R. ; Ray, Peter M. ; Biesinger, Zy ; Chapin, F. StuartPlant communities in natural ecosystems are changing and species are being lost due to anthropogenic impacts including global warming and increasing nitrogen (N) deposition. We removed dominant species, combinations of species and entire functional types from Alaskan tussock tundra, in the presence and absence of fertilization, to examine the effects of non-random species loss on plant interactions and ecosystem functioning. After 6 years, growth of remaining species had compensated for biomass loss due to removal in all treatments except the combined removal of moss, Betula nana and Ledum palustre (MBL), which removed the most biomass. Total vascular plant production returned to control levels in all removal treatments, including MBL. Inorganic soil nutrient availability, as indexed by resins, returned to control levels in all unfertilized removal treatments, except MBL. Although biomass compensation occurred, the species that provided most of the compensating biomass in any given treatment were not from the same functional type (growth form) as the removed species. This provides empirical evidence that functional types based on effect traits are not the same as functional types based on response to perturbation. Calculations based on redistributing N from the removed species to the remaining species suggested that dominant species from other functional types contributed most of the compensatory biomass. Fertilization did not increase total plant community biomass, because increases in graminoid and deciduous shrub biomass were offset by decreases in evergreen shrub, moss and lichen biomass. Fertilization greatly increased inorganic soil nutrient availability. In fertilized removal treatments, deciduous shrubs and graminoids grew more than expected based on their performance in the fertilized intact community, while evergreen shrubs, mosses and lichens all grew less than expected. Deciduous shrubs performed better than graminoids when B. nana was present, but not when it had been removed. Synthesis. Terrestrial ecosystem response to warmer temperatures and greater nutrient availability in the Arctic may result in vegetative stable-states dominated by either deciduous shrubs or graminoids. The current relative abundance of these dominant growth forms may serve as a predictor for future vegetation composition.
-
ArticleResponses of a tundra system to warming using SCAMPS : a stoichiometrically coupled, acclimating microbe–plant–soil model(Ecological Society of America, 2014-02) Sistla, Seeta A. ; Rastetter, Edward B. ; Schimel, Joshua P.Soils, plants, and microbial communities respond to global change perturbations through coupled, nonlinear interactions. Dynamic ecological responses complicate projecting how global change disturbances will influence ecosystem processes, such as carbon (C) storage. We developed an ecosystem-scale model (Stoichiometrically Coupled, Acclimating Microbe–Plant–Soil model, SCAMPS) that simulates the dynamic feedbacks between aboveground and belowground communities that affect their shared soil environment. The belowground component of the model includes three classes of soil organic matter (SOM), three microbially synthesized extracellular enzyme classes specific to these SOM pools, and a microbial biomass pool with a variable C-to-N ratio (C:N). The plant biomass, which contributes to the SOM pools, flexibly allocates growth toward wood, root, and leaf biomass, based on nitrogen (N) uptake and shoot-to-root ratio. Unlike traditional ecosystem models, the microbial community can acclimate to changing soil resources by shifting its C:N between a lower C:N, faster turnover (bacteria-like) community, and a higher C:N, slower turnover (fungal-like) community. This stoichiometric flexibility allows for the microbial C and N use efficiency to vary, feeding back into system decomposition and productivity dynamics. These feedbacks regulate changes in extracellular enzyme synthesis, soil pool turnover rates, plant growth, and ecosystem C storage. We used SCAMPS to test the interactive effects of winter, summer, and year-round soil warming, in combination with microbial acclimation ability, on decomposition dynamics and plant growth in a tundra system. Over 50-year simulations, both the seasonality of warming and the ability of the microbial community to acclimate had strong effects on ecosystem C dynamics. Across all scenarios, warming increased plant biomass (and therefore litter inputs to the SOM), while the ability of the microbial community to acclimate increased soil C loss. Winter warming drove the largest ecosystem C losses when the microbial community could acclimate, and the largest ecosystem C gains when it could not acclimate. Similar to empirical studies of tundra warming, modeled summer warming had relatively negligible effects on soil C loss, regardless of acclimation ability. In contrast, winter and year-round warming drove marked soil C loss when decomposers could acclimate, despite also increasing plant biomass. These results suggest that incorporating dynamically interacting microbial and plant communities into ecosystem models might increase the ability to link ongoing global change field observations with macro-scale projections of ecosystem biogeochemical cycling in systems under change.
-
ArticleSeasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska(Ecological Society of America, 2012-01-19) Euskirchen, Eugenie ; Bret-Harte, M. Syndonia ; Scott, G. J. ; Edgar, C. ; Shaver, Gaius R.Understanding the carbon dioxide and water fluxes in the Arctic is essential for accurate assessment and prediction of the responses of these ecosystems to climate change. In the Arctic, there have been relatively few studies of net CO2, water, and energy exchange using micrometeorological methods due to the difficulty of performing these measurements in cold, remote regions. When these measurements are performed, they are usually collected only during the short summer growing season. We established eddy covariance flux towers in three representative Alaska tundra ecosystems (heath tundra, tussock tundra, and wet sedge tundra), and have collected CO2, water, and energy flux data continuously for over three years (September 2007–May 2011). In all ecosystems, peak CO2 uptake occurred during July, with accumulations of 51–95 g C/m2 during June–August. The timing of the switch from CO2 source to sink in the spring appears to be regulated by the number of growing degree days early in the season, indicating that warmer springs may promote increased net CO2 uptake. However, this increased uptake in the spring may be lost through warmer temperatures in the late growing season that promote respiration, if this respiration is not impeded by large amounts of precipitation or cooler temperatures. Net CO2 accumulation during the growing season was generally lost through respiration during the snow covered months of September–May, turning the ecosystems into net sources of CO2 over measurement period. The water balance from June to August at the three ecosystems was variable, with the most variability observed in the heath tundra, and the least in the tussock tundra. These findings underline the importance of collecting data over the full annual cycle and across multiple types of tundra ecosystems in order to come to a more complete understanding of CO2 and water fluxes in the Arctic.