Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements
Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements
Date
2011-07
Authors
Bergamaschi, Brian A.
Fleck, Jacob A.
Downing, Bryan D.
Boss, Emmanuel S.
Pellerin, Brian A.
Ganju, Neil K.
Schoellhamer, David H.
Byington, Amy A.
Heim, Wesley A.
Stephenson, Mark
Fujii, Roger
Fleck, Jacob A.
Downing, Bryan D.
Boss, Emmanuel S.
Pellerin, Brian A.
Ganju, Neil K.
Schoellhamer, David H.
Byington, Amy A.
Heim, Wesley A.
Stephenson, Mark
Fujii, Roger
Linked Authors
Person
Person
Person
Person
Person
Files
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
10.4319/lo.2011.56.4.1355
Related Materials
Replaces
Replaced By
Keywords
Abstract
We assessed monomethylmercury (MeHg) dynamics in a tidal wetland over three seasons using a novel method that employs a combination of in situ optical measurements as concentration proxies. MeHg concentrations measured over a single spring tide were extended to a concentration time series using in situ optical measurements. Tidal fluxes were calculated using modeled concentrations and bi-directional velocities obtained acoustically. The magnitude of the flux was the result of complex interactions of tides, geomorphic features, particle sorption, and random episodic events such as wind storms and precipitation. Correlation of dissolved organic matter quality measurements with timing of MeHg release suggests that MeHg is produced in areas of fluctuating redox and not limited by buildup of sulfide. The wetland was a net source of MeHg to the estuary in all seasons, with particulate flux being much higher than dissolved flux, even though dissolved concentrations were commonly higher. Estimated total MeHg yields out of the wetland were approximately 2.5 µg m−2 yr−1—4–40 times previously published yields—representing a potential loading to the estuary of 80 g yr−1, equivalent to 3% of the river loading. Thus, export from tidal wetlands should be included in mass balance estimates for MeHg loading to estuaries. Also, adequate estimation of loads and the interactions between physical and biogeochemical processes in tidal wetlands might not be possible without long-term, high-frequency in situ measurements.
Description
Author Posting. © American Society of Limnology and Oceanography, 2011. This article is posted here by permission of American Society of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 56 (2011): 1355-1371, doi:10.4319/lo.2011.56.4.1355.
Embargo Date
Citation
Limnology and Oceanography 56 (2011): 1355-1371