Applications of natural language processing in biodiversity science
Applications of natural language processing in biodiversity science
Date
2012
Authors
Thessen, Anne E.
Cui, Hong
Mozzherin, Dmitry
Cui, Hong
Mozzherin, Dmitry
Linked Authors
Files
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
10.1155/2012/391574
Related Materials
Replaces
Replaced By
Keywords
Abstract
Centuries of biological knowledge are contained in the massive body of scientific literature, written for human-readability but too big for any one person to consume. Large-scale mining of information from the literature is necessary if biology is to transform into a data-driven science.
A computer can handle the volume but cannot make sense of the language. This paper reviews and discusses the use of natural language processing (NLP) and machine-learning algorithms to extract information from systematic literature. NLP algorithms have been used for decades, but require special development for application in the biological realm due to the special nature of the language. Many tools exist for biological information extraction (cellular processes, taxonomic names, and morphological characters), but none have been applied life wide and most still require testing and development. Progress has been made in developing algorithms for automated annotation of taxonomic text, identification of taxonomic names in text, and extraction of morphological character information from taxonomic descriptions. This manuscript will briefly discuss the key steps in applying information extraction tools to enhance biodiversity science.
Description
© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Advances in Bioinformatics 2012 (2012): 391574, doi:10.1155/2012/391574.
Embargo Date
Citation
Advances in Bioinformatics 2012 (2012): 391574