Non-invasive measurements of respiration and heart rate across wildlife species using Eulerian Video Magnification of infrared thermal imagery

dc.contributor.author Rzucidlo, Caroline L.
dc.contributor.author Curry, Erin
dc.contributor.author Shero, Michelle R.
dc.date.accessioned 2023-11-09T19:49:31Z
dc.date.available 2023-11-09T19:49:31Z
dc.date.issued 2023-03-29
dc.description © The Author(s), 2023. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rzucidlo, C., Curry, E., & Shero, M. Non-invasive measurements of respiration and heart rate across wildlife species using Eulerian Video Magnification of infrared thermal imagery. BMC Biology, 21(1), (2023): 61, https://doi.org/10.1186/s12915-023-01555-9.
dc.description.abstract An animal's metabolic rate, or energetic expenditure, both impacts and is impacted by interactions with its environment. However, techniques for obtaining measurements of metabolic rate are invasive, logistically difficult, and costly. Red-green-blue (RGB) imaging tools have been used in humans and select domestic mammals to accurately measure heart and respiration rate, as proxies of metabolic rate. The purpose of this study was to investigate if infrared thermography (IRT) coupled with Eulerian video magnification (EVM) would extend the applicability of imaging tools towards measuring vital rates in exotic wildlife species with different physical attributes.We collected IRT and RGB video of 52 total species (39 mammalian, 7 avian, 6 reptilian) from 36 taxonomic families at zoological institutions and used EVM to amplify subtle changes in temperature associated with blood flow for respiration and heart rate measurements. IRT-derived respiration and heart rates were compared to 'true' measurements determined simultaneously by expansion of the ribcage/nostrils and stethoscope readings, respectively. Sufficient temporal signals were extracted for measures of respiration rate in 36 species (85% success in mammals; 50% success in birds; 100% success in reptiles) and heart rate in 24 species (67% success in mammals; 33% success in birds; 0% success in reptiles) using IRT-EVM. Infrared-derived measurements were obtained with high accuracy (respiration rate, mean absolute error: 1.9 breaths per minute, average percent error: 4.4%; heart rate, mean absolute error: 2.6 beats per minute, average percent error: 1.3%). Thick integument and animal movement most significantly hindered successful validation.The combination of IRT with EVM analysis provides a non-invasive method to assess individual animal health in zoos, with great potential to monitor wildlife metabolic indices in situ.
dc.description.sponsorship This research was funded by NSF IOS-2130584, an INTERN supplement to award IOS-1853377 and the WHOI Ocean Ventures Fund.
dc.identifier.citation Rzucidlo, C., Curry, E., & Shero, M. (2023). Non-invasive measurements of respiration and heart rate across wildlife species using Eulerian Video Magnification of infrared thermal imagery. BMC Biology, 21(1), 61.
dc.identifier.doi 10.1186/s12915-023-01555-9
dc.identifier.uri https://hdl.handle.net/1912/67184
dc.publisher BioMed Central
dc.relation.uri https://doi.org/10.1186/s12915-023-01555-9
dc.rights Attribution 4.0 International *
dc.rights.uri http://creativecommons.org/licenses/by/4.0/ *
dc.subject Conservation
dc.subject Remote monitoring
dc.subject Animal health
dc.subject Veterinary technologies
dc.subject Metabolic rate
dc.title Non-invasive measurements of respiration and heart rate across wildlife species using Eulerian Video Magnification of infrared thermal imagery
dc.type Article
dspace.entity.type Publication
relation.isAuthorOfPublication 1e3fe56b-63fa-4feb-9d83-3512ee5c24c9
relation.isAuthorOfPublication c485fccd-7eab-42c6-afb5-c13c12310b2c
relation.isAuthorOfPublication.latestForDiscovery 1e3fe56b-63fa-4feb-9d83-3512ee5c24c9
Files
Original bundle
Now showing 1 - 3 of 3
Thumbnail Image
Name:
s12915-023-01555-9.pdf
Size:
3.75 MB
Format:
Adobe Portable Document Format
Description:
Thumbnail Image
Name:
12915_2023_1555_MOESM1_ESM.pdf
Size:
164.06 KB
Format:
Adobe Portable Document Format
Description:
Thumbnail Image
Name:
12915_2023_1555_MOESM2_ESM.pdf
Size:
117.2 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections