Ecological succession and viability of human-associated microbiota on restroom surfaces

Thumbnail Image
Gibbons, Sean M.
Schwartz, Tara
Fouquier, Jennifer
Mitchell, Michelle
Sangwan, Naseer
Gilbert, Jack A.
Kelley, Scott T.
Alternative Title
Date Created
Replaced By
Human-associated bacteria dominate the built environment (BE). Following decontamination of floors, toilet seats, and soap dispensers in 4 public restrooms, in situ bacterial communities were characterized hourly, daily, and weekly to determine their successional ecology. The viability of cultivable bacteria, following the removal of dispersal agents (humans), was also assessed hourly. A late successional community developed within 5-8 hours on restroom floors, and showed remarkable stability over weeks to months. Despite late successional dominance by skin- and outdoor-associated bacteria, the most ubiquitous organisms were predominantly gut-associated taxa, which persisted following exclusion of humans. Staphylococcus represented the majority of the cultivable community, even after several hours of human-exclusion. MRSA-associated virulence genes were found on floors, but were not present in assembled Staphylococcus pan-genomes. Viral abundances, which were predominantly enterophage, human papilloma and herpes viruses, were significantly correlated with bacteria abundances, and showed an unexpectedly low virus-to-bacteria ratio in surface-associated samples, suggesting that bacterial hosts are mostly dormant on BE surfaces.
Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology (2014), doi:10.1128/AEM.03117-14.
Embargo Date
Cruise ID
Cruise DOI
Vessel Name