Connectivity and resilience of coral reef metapopulations in marine protected areas : matching empirical efforts to predictive needs

Thumbnail Image
Date
2009-02-11
Authors
Botsford, L. W.
White, J. Wilson
Coffroth, M.- A.
Paris, Claire B.
Planes, Serge
Shearer, T. L.
Thorrold, Simon R.
Jones, Geoffrey P.
Alternative Title
Date Created
Location
DOI
10.1007/s00338-009-0466-z
Related Materials
Replaces
Replaced By
Keywords
Connectivity
Larval dispersal
Marine protected areas
Resilience
Replacement
Genetics
Abstract
Design and decision-making for marine protected areas (MPAs) on coral reefs require prediction of MPA effects with population models. Modeling of MPAs has shown how the persistence of metapopulations in systems of MPAs depends on the size and spacing of MPAs, and levels of fishing outside the MPAs. However, the pattern of demographic connectivity produced by larval dispersal is a key uncertainty in those modeling studies. The information required to assess population persistence is a dispersal matrix containing the fraction of larvae traveling to each location from each location, not just the current number of larvae exchanged among locations. Recent metapopulation modeling research with hypothetical dispersal matrices has shown how the spatial scale of dispersal, degree of advection versus diffusion, total larval output, and temporal and spatial variability in dispersal influence population persistence. Recent empirical studies using population genetics, parentage analysis, and geochemical and artificial marks in calcified structures have improved the understanding of dispersal. However, many such studies report current self-recruitment (locally produced settlement/settlement from elsewhere), which is not as directly useful as local retention (locally produced settlement/total locally released), which is a component of the dispersal matrix. Modeling of biophysical circulation with larval particle tracking can provide the required elements of dispersal matrices and assess their sensitivity to flows and larval behavior, but it requires more assumptions than direct empirical methods. To make rapid progress in understanding the scales and patterns of connectivity, greater communication between empiricists and population modelers will be needed. Empiricists need to focus more on identifying the characteristics of the dispersal matrix, while population modelers need to track and assimilate evolving empirical results.
Description
© 2009 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Coral Reefs 28 (2009): 327-337, doi:10.1007/s00338-009-0466-z.
Embargo Date
Citation
Coral Reefs 28 (2009): 327-337
Cruises
Cruise ID
Cruise DOI
Vessel Name
Collections
Except where otherwise noted, this item's license is described as Attribution-NonCommercial 4.0 International