Relationship of bacterial richness to organic degradation rate and sediment age in subseafloor sediment
Relationship of bacterial richness to organic degradation rate and sediment age in subseafloor sediment
Date
2016-06-10
Authors
Walsh, Emily A.
Kirkpatrick, John B.
Pockalny, Robert
Sauvage, Justine
Spivack, Arthur J.
Murray, Richard W.
Sogin, Mitchell L.
D'Hondt, Steven
Kirkpatrick, John B.
Pockalny, Robert
Sauvage, Justine
Spivack, Arthur J.
Murray, Richard W.
Sogin, Mitchell L.
D'Hondt, Steven
Linked Authors
Person
Person
Person
Person
Person
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
10.1128/AEM.00809-16
Related Materials
Replaces
Replaced By
Keywords
Abstract
Subseafloor sediment hosts a large, taxonomically rich and metabolically diverse microbial ecosystem. However, the factors that control microbial diversity in subseafloor sediment have rarely been explored. Here we show that bacterial richness varies with organic degradation rate and sediment age. At three open-ocean sites (in the Bering Sea and equatorial Pacific) and one continental margin site (Indian Ocean), richness decreases exponentially with increasing sediment depth. The rate of decrease in richness with depth varies from site to site. The vertical succession of predominant terminal electron acceptors correlates to abundance-weighted community composition, but does not drive the vertical decrease in richness. Vertical patterns of richness at the open-ocean sites closely match organic degradation rates; both properties are highest near the seafloor and decline together as sediment depth increases. This relationship suggests that (i) total catabolic activity and/or electron donor diversity exerts a primary influence on bacterial richness in marine sediment, and (ii) many bacterial taxa that are poorly adapted for subseafloor sedimentary conditions are degraded in the geologically young sediment where respiration rates are high. Richness consistently takes a few hundred thousand years to decline from near-seafloor values to much lower values in deep anoxic subseafloor sediment, regardless of sedimentation rate, predominant terminal electron acceptor, or oceanographic context.
Description
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Applied and Environmental Microbiology 82 (2016): 4994-4999, doi:10.1128/AEM.00809-16.
Embargo Date
Citation
Applied and Environmental Microbiology 82 (2016): 4994-4999