Identity and dynamics of the microbial community responsible for carbon monoxide oxidation in marine environments

Thumbnail Image
Date
2003-09
Authors
Tolli, John D.
Linked Authors
Alternative Title
As Published
Date Created
Location
Sargasso Sea
Vineyard Sound, MA
DOI
10.1575/1912/2432
Related Materials
Replaces
Replaced By
Keywords
Carbon monoxide
Oxidation
Seawater
Microbial ecology
Abstract
As colored dissolved organic matter in seawater absorbs UV solar radiation, a variety of simple chemical species are produced, including carbon monoxide (CO). The ocean surface water is saturated with respect to CO, and is thus a source of CO to the atmosphere. CO reacts with and removes free-radical compounds, and may itself contribute to the 'greenhouse' gas content of the atmosphere. An important sink for CO in seawater is the biological oxidation of CO to CO2 by marine microorganisms. The objectives of this study are to identify component members of the microbial community responsible for the oxidation of CO in coastal marine environments through a combination of recent microbiological and molecular approaches, and to estimate their contributions to total in situ CO bio-oxidation. We utilize an enrichment method that involves cultivation of bacteria on membrane filters, subsequent incubation with radiolabeled CO, and the use of autoradiography to screen colonies with the desired phenotype. Cell-specific CO-oxidation activity is determined for selected purified strains with a time-series 14CO-oxidation method. Molecular phylogeny based on 16S-rDNA gene sequence information within the context of the large and growing 168 database determines the phylogenetic relatedness and identity of marine CO-oxidizing bacteria that result from our cultivation program. The CO oxidizing organisms isolated in this study with greatest activity are closely related to the Roseobacter and Paracoccus genera of the alpha-proteobacteria, collectively known as the "marine alpha group". Other microorganisms found to oxidize CO at environmentally relevant rates are members of beta- and gamma-proteobacteria, and one in the Cytophaga-Flavobacterium-Bacteroides group. A collective CO-oxidation activity was calculated from physiological measurements of purified isolates and abundance estimates of CO-oxidizing marine alpha group organisms. Relative proportions of CO-oxidizing Roseobacter and Paracoccus cells were resolved microscopically by microautoradiography in combination with DAPI and fluorescent-labeled oligonucleotide probes (Substrate Tracking AutoRadiography - Fluorescent In Situ Hybridization (STAR-FISH)). Marine alpha group organisms were a major component of total cell numbers (45.7%) at the time of sampling (March 2003), and CO-oxidizing members of the marine alpha group contributed up to 40.7% of total CO oxidation occurring in coastal waters.
Description
Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2003
Embargo Date
Citation
Tolli, J. D. (2003). Identity and dynamics of the microbial community responsible for carbon monoxide oxidation in marine environments [Doctoral thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution]. Woods Hole Open Access Server. https://doi.org/10.1575/1912/2432
Cruises
Cruise ID
Cruise DOI
Vessel Name