Trophic ecology of barrelfish (Hyperoglyphe perciformis) in oceanic waters of southeast Florida
Trophic ecology of barrelfish (Hyperoglyphe perciformis) in oceanic waters of southeast Florida
dc.contributor.author | Suca, Justin J. | |
dc.contributor.author | Llopiz, Joel K. | |
dc.date.accessioned | 2018-05-02T16:14:14Z | |
dc.date.available | 2018-05-02T16:14:14Z | |
dc.date.issued | 2017-09 | |
dc.description | Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Bulletin of Marine Science 93 (2017): 987-996, doi:/10.5343/bms.2017.1003. | en_US |
dc.description.abstract | Deep-water demersal fishes represent an understudied but ecologically important group of organisms. Select species of demersal fishes rely on pelagic prey items, representing a direct transport of surface carbon to greater depths. Barrelfish Hyperoglyphe perciformis (Mitchell, 1818), which inhabit deep slope waters, are a species that has been suggested to fill this role, as congeners consume primarily pelagic gelatinous zooplankton; however, there is a dearth of information on the trophic ecology of barrelfish. Stomach content and stable isotope analyses were conducted on barrelfish caught by recreational fishers off Miami, Florida to improve our understanding of the feeding of this species. Pyrosoma atlanticum (Péron, 1804), a pelagic, vertically migrating tunicate, represented 89% of the barrelfish diet by weight. Mesopelagic fish and shrimp contributed much smaller proportions. Standard ellipse areas corrected for sample size (SEAc) showed a substantially smaller isotopic niche width for barrelfish (0.606 ‰2) than dolphinfish (2.16 ‰2), king mackerel (3.04 ‰2), or wahoo (1.97 ‰2). Coupled with dependence on a singular prey item, the low SEAc of barrelfish suggests they occupy a limited trophic niche space. Overlap of barrelfish SEAc with dolphinfish (99.5% overlap) and king mackerel (100% overlap) indicate that the carbon sources as well as the number of trophic steps for barrelfish are similar to king mackerel and dolphinfish and are linked to surface waters. This trophic linkage suggests that barrelfish may play a role in carbon export and further study into their behavior and daily consumption rates is warranted for quantifying this role. | en_US |
dc.description.sponsorship | Funding was provided to JJS from a Small Undergraduate Research Grant Experience (SURGE). JKL was supported as a Cooperative Institute for the North Atlantic Region fellow with funds from NOAA. | en_US |
dc.identifier.uri | https://hdl.handle.net/1912/10314 | |
dc.language.iso | en_US | en_US |
dc.relation.uri | https://doi.org/10.5343/bms.2017.1003 | |
dc.title | Trophic ecology of barrelfish (Hyperoglyphe perciformis) in oceanic waters of southeast Florida | en_US |
dc.type | Preprint | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 99afbd3a-2d10-4463-a39f-7200f4bce088 | |
relation.isAuthorOfPublication | 3b11180d-3f04-4811-bac5-68b694bf2974 | |
relation.isAuthorOfPublication.latestForDiscovery | 99afbd3a-2d10-4463-a39f-7200f4bce088 |
Files
Original bundle
1 - 1 of 1
- Name:
- Suca_Llopiz_2017_Accepted_Corrected.pdf
- Size:
- 220.86 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.89 KB
- Format:
- Item-specific license agreed upon to submission
- Description: