Functional traits provide new insight into recovery and succession at deep-sea hydrothermal vents

Alternative Title
Date Created
Location
DOI
10.1002/ecy.3418
Related Materials
Replaces
Replaced By
Keywords
Benthic invertebrates
Disturbance
Functional traits
Hydrothermal vents
Recovery
Succession
Abstract
Investigation of communities in extreme environments with unique conditions has the potential to broaden or challenge existing theory as to how biological communities assemble and change through succession. Deep-sea hydrothermal vent ecosystems have strong, parallel gradients of nutrients and environmental stress, and present unusual conditions in early succession, in that both nutrient availability and stressors are high. We analyzed the succession of the invertebrate community at 9°50′ N on the East Pacific Rise for 11 yr following an eruption in 2006 in order to test successional theories developed in other ecosystems. We focused on functional traits including body size, external protection, provision of habitat (foundation species), and trophic mode to understand how the unique nutritional and stress conditions influence community composition. In contrast to established theory, large, fast-growing, structure-forming organisms colonized rapidly at vents, while small, asexually reproducing organisms were not abundant until later in succession. Species in early succession had high external protection, as expected in the harsh thermal and chemical conditions after the eruption. Changes in traits related to feeding ecology and dispersal potential over succession agreed with expectations from other ecosystems. We also tracked functional diversity metrics over time to see how they compared to species diversity. While species diversity peaked at 8 yr post-eruption, functional diversity was continuing to increase at 11 yr. Our results indicate that deep-sea hydrothermal vents have distinct successional dynamics due to the high stress and high nutrient conditions in early succession. These findings highlight the importance of extending theory to new systems and considering function to allow comparison between ecosystems with different species and environmental conditions.
Description
© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dykman, L. N., Beaulieu, S. E., Mills, S. W., Solow, A. R., & Mullineaux, L. S. Functional traits provide new insight into recovery and succession at deep-sea hydrothermal vents. Ecology, 102(8), (2021): e03418, https://doi.org/10.1002/ecy.3418.
Embargo Date
Citation
Dykman, L. N., Beaulieu, S. E., Mills, S. W., Solow, A. R., & Mullineaux, L. S. (2021). Functional traits provide new insight into recovery and succession at deep-sea hydrothermal vents. Ecology, 102(8), e03418.
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution 4.0 International