Deep learning is widely applicable to phenotyping embryonic development and disease

dc.contributor.author Naert, Thomas
dc.contributor.author Çiçek, Özgün
dc.contributor.author Ogar, Paulina
dc.contributor.author Bürgi, Max
dc.contributor.author Shaidani, Nikko-Ideen
dc.contributor.author Kaminski, Michael M.
dc.contributor.author Xu, Yuxiao
dc.contributor.author Grand, Kelli
dc.contributor.author Vujanovic, Marko
dc.contributor.author Prata, Daniel
dc.contributor.author Hildebrandt, Friedhelm
dc.contributor.author Brox, Thomas
dc.contributor.author Ronneberger, Olaf
dc.contributor.author Voigt, Fabian F.
dc.contributor.author Helmchen, Fritjof
dc.contributor.author Loffing, Johannes
dc.contributor.author Horb, Marko E.
dc.contributor.author Rankin Willsey, Helen
dc.contributor.author Lienkamp, Soeren S.
dc.date.accessioned 2022-01-06T19:56:53Z
dc.date.available 2022-01-06T19:56:53Z
dc.date.issued 2021-11-05
dc.description © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Naert, T., Çiçek, Ö., Ogar, P., Bürgi, M., Shaidani, N.-I., Kaminski, M. M., Xu, Y., Grand, K., Vujanovic, M., Prata, D., Hildebrandt, F., Brox, T., Ronneberger, O., Voigt, F. F., Helmchen, F., Loffing, J., Horb, M. E., Willsey, H. R., & Lienkamp, S. S. Deep learning is widely applicable to phenotyping embryonic development and disease. Development, 148(21), (2021): dev199664, https://doi.org/10.1242/dev.199664. en_US
dc.description.abstract Genome editing simplifies the generation of new animal models for congenital disorders. However, the detailed and unbiased phenotypic assessment of altered embryonic development remains a challenge. Here, we explore how deep learning (U-Net) can automate segmentation tasks in various imaging modalities, and we quantify phenotypes of altered renal, neural and craniofacial development in Xenopus embryos in comparison with normal variability. We demonstrate the utility of this approach in embryos with polycystic kidneys (pkd1 and pkd2) and craniofacial dysmorphia (six1). We highlight how in toto light-sheet microscopy facilitates accurate reconstruction of brain and craniofacial structures within X. tropicalis embryos upon dyrk1a and six1 loss of function or treatment with retinoic acid inhibitors. These tools increase the sensitivity and throughput of evaluating developmental malformations caused by chemical or genetic disruption. Furthermore, we provide a library of pre-trained networks and detailed instructions for applying deep learning to the reader's own datasets. We demonstrate the versatility, precision and scalability of deep neural network phenotyping on embryonic disease models. By combining light-sheet microscopy and deep learning, we provide a framework for higher-throughput characterization of embryonic model organisms. en_US
dc.description.sponsorship T.N. received funding from H2020 Marie Skłodowska-Curie Actions (xenCAKUT - 891127). M.M.K. is supported by the Emmy Noether Programme of the Deutsche Forschungsgemeinschaft (KA5060/1-1). F.H. is the William E. Harmon Professor of Pediatrics. This research is supported by grants from the National Institutes of Health to F.H. (DK-076683-13 and RC2-DK122397) and M.E.H. (OD-010997, OD-030008 and HD-084409). H.R.W. is supported by a gift from the Overlook International Foundation and by grant support from the National Institutes of Mental Health Convergent Neuroscience Initiative and by the Psychiatric Cell Map Initiative (pcmi.ucsf.edu, 1U01MH115747-01A1) to Matthew State. S.S.L. is supported by the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030_189102), the Swiss National Centre of Competence in Research Kidney Control of Homeostasis and the European Union's Horizon 2020 Framework Programme (ERC-StrG DiRECT - 804474). en_US
dc.identifier.citation Naert, T., Çiçek, Ö., Ogar, P., Bürgi, M., Shaidani, N.-I., Kaminski, M. M., Xu, Y., Grand, K., Vujanovic, M., Prata, D., Hildebrandt, F., Brox, T., Ronneberger, O., Voigt, F. F., Helmchen, F., Loffing, J., Horb, M. E., Willsey, H. R., & Lienkamp, S. S. (2021). Deep learning is widely applicable to phenotyping embryonic development and disease. Development, 148(21), dev199664. en_US
dc.identifier.doi 10.1242/dev.199664
dc.identifier.uri https://hdl.handle.net/1912/27898
dc.publisher The Company of Biologists en_US
dc.relation.uri https://doi.org/10.1242/dev.199664
dc.rights Attribution 4.0 International *
dc.rights.uri http://creativecommons.org/licenses/by/4.0/ *
dc.subject U-Net en_US
dc.subject Xenopus en_US
dc.subject Light-sheet microscopy en_US
dc.subject Deep learning en_US
dc.subject Cystic kidney disease en_US
dc.subject Craniofacial dysmorphia en_US
dc.title Deep learning is widely applicable to phenotyping embryonic development and disease en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 7922c22e-870b-4bf3-84b2-117c7b9383e6
relation.isAuthorOfPublication eeb942f6-8665-4948-a61b-c4c634bb30f6
relation.isAuthorOfPublication 172d68b2-9fbd-48d3-a7a0-3990eae15ae3
relation.isAuthorOfPublication 19953dc9-bf7c-48dd-bac8-3cb2a942e559
relation.isAuthorOfPublication 1e5c0fb6-aa1f-4245-b25d-00116e17ec26
relation.isAuthorOfPublication 09e81111-559d-4790-a278-18dbfc3a1a46
relation.isAuthorOfPublication 57eb1f3f-0335-476f-8ca0-54cacfa2adcf
relation.isAuthorOfPublication 9b30b0f5-710e-4eb7-bf90-9df6f42db07b
relation.isAuthorOfPublication b1298e51-de53-47c8-9575-ddb888d64651
relation.isAuthorOfPublication c7e4626c-7dce-4a57-a75f-dfd8c066e0ed
relation.isAuthorOfPublication 318cccd0-eb67-4dfa-8383-03fd4d91a9a8
relation.isAuthorOfPublication e524383f-8b08-4cf9-8805-4a028db11a66
relation.isAuthorOfPublication 9c92a240-e9b9-47ea-ae5e-10f3a443e194
relation.isAuthorOfPublication 7ab7749a-8006-4f87-abb8-207c367e47d5
relation.isAuthorOfPublication 1233ed1e-778e-4f19-9bb8-bd5dcc2179bf
relation.isAuthorOfPublication dd08dd3e-dd45-488b-b106-a8f40ef06097
relation.isAuthorOfPublication c693e053-a3b1-4089-9292-5568f8a8faae
relation.isAuthorOfPublication 64ddab05-2eb9-4be1-97d6-756a2ff9b311
relation.isAuthorOfPublication b6f7327f-96d6-4f2a-aa57-bdcd2f5722c1
relation.isAuthorOfPublication.latestForDiscovery 7922c22e-870b-4bf3-84b2-117c7b9383e6
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
dev199664.pdf
Size:
41.77 MB
Format:
Adobe Portable Document Format
Description:
Article_with_Supplementary_information
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: