Far-field unlabeled super-resolution imaging with superoscillatory illumination
Far-field unlabeled super-resolution imaging with superoscillatory illumination
dc.contributor.author | Rogers, Edward T. F. | |
dc.contributor.author | Quraishe, Shmma | |
dc.contributor.author | Rogers, Katrine S. | |
dc.contributor.author | Newman, Tracey A. | |
dc.contributor.author | Smith, Peter J. S. | |
dc.contributor.author | Zheludev, Nikolay I. | |
dc.date.accessioned | 2020-07-28T20:09:09Z | |
dc.date.available | 2020-07-28T20:09:09Z | |
dc.date.issued | 2020-06-19 | |
dc.description | © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rogers, E. T. F., Quraishe, S., Rogers, K. S., Newman, T. A., Smith, P. J. S., & Zheludev, N., I. Far-field unlabeled super-resolution imaging with superoscillatory illumination. APL Photonics, 5(6), (2020): 066107, doi:10.1063/1.5144918. | en_US |
dc.description.abstract | Unlabeled super-resolution is the next grand challenge in imaging. Stimulated emission depletion and single-molecule microscopies have revolutionized the life sciences but are still limited by the need for reporters (labels) embedded within the sample. While the Veselago–Pendry “super-lens,” using a negative-index metamaterial, is a promising idea for imaging beyond the diffraction limit, there are substantial technological challenges to its realization. Another route to far-field subwavelength focusing is using optical superoscillations: engineered interference of multiple coherent waves creating an, in principle, arbitrarily small hotspot. Here, we demonstrate microscopy with superoscillatory illumination of the object and describe its underlying principles. We show that far-field images taken with superoscillatory illumination are themselves superoscillatory and, hence, can reveal fine structural details of the object that are lost in conventional far-field imaging. We show that the resolution of a superoscillatory microscope is determined by the size of the hotspot, rather than the bandwidth of the optical instrument. We demonstrate high-frame-rate polarization-contrast imaging of unmodified living cells with a resolution significantly exceeding that achievable with conventional instruments. This non-algorithmic, low-phototoxicity imaging technology is a powerful tool both for biological research and for super-resolution imaging of samples that do not allow labeling, such as the interior of silicon chips. | en_US |
dc.description.sponsorship | his research was supported by Wessex Medical Research (Grant No. WMR03), the University of Southampton: Institute for Life Sciences and Enterprise Fund, the UK’s Engineering and Physical Sciences Research Council (Grant No. EP/M009122/1), and the Singapore Ministry of Education [Grant No. MOE2016-T3-1-006 (S)]. The authors would like to thank Guanghui Yuan for numerous fruitful discussions; Alexander Buchnev and Jun Yu Ou for fabrication of the test masks; Grace Hallinan, Aleks Pitera, and Katrin Deinhardt for assistance with the neuronal cultures; Rudolf Oldenbourg for fruitful discussions; and Mark Willet of the Microscopy Facility in Biological Sciences at the University of Southampton for the matched fluorescent and DIC photos of HeLa cells used in Fig. 3. | en_US |
dc.identifier.citation | Rogers, E. T. F., Quraishe, S., Rogers, K. S., Newman, T. A., Smith, P. J. S., & Zheludev, N., I. (2020). Far-field unlabeled super-resolution imaging with superoscillatory illumination. APL Photonics, 5(6), 066107. | en_US |
dc.identifier.doi | 10.1063/1.5144918 | |
dc.identifier.uri | https://hdl.handle.net/1912/26012 | |
dc.publisher | AIP Publishing | en_US |
dc.relation.uri | https://doi.org/10.1063/1.5144918 | |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Far-field unlabeled super-resolution imaging with superoscillatory illumination | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c66647d5-6858-4606-af8a-cff86c63d5c3 | |
relation.isAuthorOfPublication | 626cc1a6-851a-449c-ba4b-16af332a9f37 | |
relation.isAuthorOfPublication | 8b282a5c-dded-47a7-98ef-3b40d7c13ff7 | |
relation.isAuthorOfPublication | 26855a27-d9ae-4d6d-91de-1361e95e4bc0 | |
relation.isAuthorOfPublication | df59bf03-4626-46fd-818b-6ef2c3305202 | |
relation.isAuthorOfPublication | dfb96879-d114-4bab-9a66-518c52ddb7f0 | |
relation.isAuthorOfPublication.latestForDiscovery | c66647d5-6858-4606-af8a-cff86c63d5c3 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.88 KB
- Format:
- Item-specific license agreed upon to submission
- Description: