Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent
Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent
dc.contributor.author | Fortunato, Caroline S. | |
dc.contributor.author | Huber, Julie A. | |
dc.date.accessioned | 2016-09-27T14:24:49Z | |
dc.date.available | 2016-09-27T14:24:49Z | |
dc.date.issued | 2016-02-12 | |
dc.description | © The International Society for Microbial Ecology, 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in ISME Journal 10 (2016): 1925–1938, doi:10.1038/ismej.2015.258. | en_US |
dc.description.abstract | The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched 13C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent. | en_US |
dc.description.sponsorship | This work was funded by the Gordon and Betty Moore Foundation Grant GBMF3297 and NSF Center for Dark Energy Biosphere Investigations (C-DEBI) (OCE-0939564). The data collected in this study is based upon work supported by the Schmidt Ocean Institute during cruise FK010-2013 aboard R/V Falkor. | en_US |
dc.identifier.citation | ISME Journal 10 (2016): 1925–1938 | en_US |
dc.identifier.doi | 10.1038/ismej.2015.258 | |
dc.identifier.uri | https://hdl.handle.net/1912/8420 | |
dc.language.iso | en_US | en_US |
dc.publisher | Nature Publishing Group | en_US |
dc.relation.uri | https://doi.org/10.1038/ismej.2015.258 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5cbdf850-bfdf-482c-8afb-05f541770b8c | |
relation.isAuthorOfPublication | f1d4ff65-18bb-4add-940b-0310f016048e | |
relation.isAuthorOfPublication.latestForDiscovery | 5cbdf850-bfdf-482c-8afb-05f541770b8c |
Files
Original bundle
1 - 4 of 4
- Name:
- ismej2015258a.pdf
- Size:
- 2.39 MB
- Format:
- Adobe Portable Document Format
- Description:
- Article
No Thumbnail Available
- Name:
- ismej2015258x1.doc
- Size:
- 138 KB
- Format:
- Microsoft Word
- Description:
- Supplementary methods
No Thumbnail Available
- Name:
- ismej2015258x2.doc
- Size:
- 293.5 KB
- Format:
- Microsoft Word
- Description:
- Supplementary table
- Name:
- ismej2015258x3.jpg
- Size:
- 732.11 KB
- Format:
- Joint Photographic Experts Group/JPEG File Interchange Format (JFIF)
- Description:
- Supplementary figure
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.89 KB
- Format:
- Item-specific license agreed upon to submission
- Description: