Dual functions of labial resolve the hox logic of chelicerate head segments

Thumbnail Image
Date
2023-02-17
Authors
Gainett, Guilherme
Klementz, Benjamin C.
Blaszczyk, Pola O.
Bruce, Heather S.
Patel, Nipam H.
Sharma, Prashant P.
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1093/molbev/msad037
Related Materials
Replaces
Replaced By
Keywords
Arthropoda
Serial homology
Opiliones
Tritocerebrum
Xiphosura
Hox1
Abstract
Despite an abundance of gene expression surveys, comparatively little is known about Hox gene function in Chelicerata. Previous investigations of paralogs of labial (lab) and Deformed (Dfd) in a spider have shown that these play a role in tissue maintenance of the pedipalp segment (lab-1) and in patterning the first walking leg identity (Dfd-1), respectively. However, extrapolations of these data across chelicerates are hindered by the existence of duplicated Hox genes in arachnopulmonates (e.g., spiders and scorpions), which have resulted from an ancient whole genome duplication (WGD) event. Here, we investigated the function of the single-copy ortholog of lab in the harvestman Phalangium opilio, an exemplar of a lineage that was not subject to this WGD. Embryonic RNA interference against lab resulted in two classes of phenotypes: homeotic transformations of pedipalps to chelicerae, as well as reduction and fusion of the pedipalp and leg 1 segments. To test for combinatorial function, we performed a double knockdown of lab and Dfd, which resulted in a homeotic transformation of both pedipalps and the first walking legs into cheliceral identity, whereas the second walking leg is transformed into a pedipalpal identity. Taken together, these results elucidate a model for the Hox logic of head segments in Chelicerata. To substantiate the validity of this model, we performed expression surveys for lab and Dfd paralogs in scorpions and horseshoe crabs. We show that repetition of morphologically similar appendages is correlated with uniform expression levels of the Hox genes lab and Dfd, irrespective of the number of gene copies.
Description
© The Author(s), 2023. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gainett, G., Klementz, B. C., Blaszczyk, P. O., Bruce, H. S., Patel, N. H., & Sharma, P. P. Dual functions of labial resolve the Hox logic of chelicerate head segments. Molecular Biology and Evolution,40(3), (2023): msad037, https://doi.org/10.1093/molbev/msad037.
Embargo Date
Citation
Gainett, G., Klementz, B. C., Blaszczyk, P. O., Bruce, H. S., Patel, N. H., & Sharma, P. P. (2023). Dual functions of labial resolve the Hox logic of chelicerate head segments. Molecular Biology and Evolution,40(3), msad037.
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution-NonCommercial 4.0 International