Marine dispersal scales are congruent over evolutionary and ecological time

Thumbnail Image
Pinsky, Malin L.
Saenz-Agudelo, Pablo
Salles, Océane C.
Almany, Glenn R.
Bode, Michael
Berumen, Michael L.
Andrefouet, Serge
Thorrold, Simon R.
Jones, Geoffrey P.
Planes, Serge
Alternative Title
Date Created
Replaced By
Population genetics
Isolation by distance
Reef fish
The degree to which offspring remain near their parents or disperse widely is critical for understanding population dynamics, evolution, and biogeography, and for designing conservation actions. In the ocean, most estimates suggesting short-distance dispersal are based on direct ecological observations of dispersing individuals, while indirect evolutionary estimates often suggest substantially greater homogeneity among populations. Reconciling these two approaches and their seemingly competing perspectives on dispersal has been a major challenge. However, here we show for the first time that evolutionary and ecological measures of larval dispersal can closely agree by using both to estimate the distribution of dispersal distances. In orange clownfish (Amphiprion percula) populations in Kimbe Bay, Papua New Guinea, we found that evolutionary dispersal kernels were 17 [95% CI: 12–24] km wide, while an exhaustive set of direct larval dispersal observations suggested kernel widths of 27 [19–36] km or 19 [15–27] km across two years. The similarity between these two approaches suggests that ecological and evolutionary dispersal kernels can be equivalent, and that the apparent disagreement between direct and indirect measurements can be overcome. Our results suggest that carefully applied evolutionary methods, which are often less expensive, can be broadly relevant for understanding ecological dispersal across the tree of life.
© The Author(s), 2016. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Current Biology 27 (2017): 149-154, doi:10.1016/j.cub.2016.10.053.
Embargo Date
Cruise ID
Cruise DOI
Vessel Name