Inhibition of phosphatase activity facilitates the formation and maintenance of NMDA-induced calcium/calmodulin-dependent protein kinase ii clusters in hippocampal neurons
Inhibition of phosphatase activity facilitates the formation and maintenance of NMDA-induced calcium/calmodulin-dependent protein kinase ii clusters in hippocampal neurons
Date
2004-10-04
Authors
Tao-Cheng, Jung-Hwa
Vinade, Lucia
Winters, Christine A.
Reese, Thomas S.
Dosemeci, Ayse
Vinade, Lucia
Winters, Christine A.
Reese, Thomas S.
Dosemeci, Ayse
Linked Authors
Person
Person
Person
Person
Person
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Immunogold electron microscopy
Calyculin A
Okadaic acid
Calcium/calmodulin-dependent protein kinase II
Autophosphorylation
Calyculin A
Okadaic acid
Calcium/calmodulin-dependent protein kinase II
Autophosphorylation
Abstract
The majority of hippocampal neurons in dissociated cultures and in intact brain exhibit clustering of CaMKII into spherical structures with an average diameter of 110 nm when subjected to conditions that mimic ischemia and excitotoxicity (Tao-Cheng et al., 2001). Because clustering of CaMKII would reduce its effective concentration within the neuron, it may represent a cellular strategy to prevent excessive CaMKII-mediated phosphorylation during episodes of Ca2+ overload. Here we employ a relatively mild excitatory stimulus to promote sub-maximal clustering for the purpose of studying the conditions for the formation and disappearance of CaMKII clusters. Treatment with 30 µM NMDA for 2 min produced CaMKII clustering in ~15 percent of dissociated hippocampal neurons in culture, as observed by pre-embedding immunogold electron microscopy. These CaMKII clusters could be labeled with antibodies specific to the phospho form (Thr286) of CaMKII, suggesting that at least some of the CaMKII molecules in clusters are autophosphorylated. To test whether phosphorylation is involved in the formation and maintenance of CaMKII clusters, the phosphatase inhibitors calyculin A (5 nM) or okadaic acid (1 µM) were included in the incubation medium. With inhibitors more neurons exhibited CaMKII clusters in response to 2 min NMDA treatment. Furthermore, 5 min after the removal of NMDA and Ca2+, CaMKII clusters remained and could still be labeled with the phospho-specific antibody. In contrast, in the absence of phosphatase inhibitors, no clusters were detected 5 min after the removal of NMDA and Ca2+ from the medium. These results suggest that phosphatases type 1 and/or 2A regulate the formation and disappearance of CaMKII clusters.
Description
Author Posting. © The Authors, 2004. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Neuroscience 130 (2005), doi:10.1016/j.neuroscience.2004.10.008.