Bacterial diversity and successional patterns during biofilm formation on freshly exposed basalt surfaces at diffuse-flow deep-sea vents

Thumbnail Image
Date
2015-09-10
Authors
Gulmann, Lara K.
Beaulieu, Stace E.
Shank, Timothy M.
Ding, Kang
Seyfried, William E.
Sievert, Stefan M.
Alternative Title
Date Created
Location
DOI
10.3389/fmicb.2015.00901
Related Materials
Replaces
Replaced By
Keywords
Hydrothermal vents
Colonization
Species sorting
Settlement
Volcanic eruption
16S rRNA
Epsilonproteobacteria
Disturbance
Abstract
Many deep-sea hydrothermal vent systems are regularly impacted by volcanic eruptions, leaving fresh basalt where abundant animal and microbial communities once thrived. After an eruption, microbial biofilms are often the first visible evidence of biotic re-colonization. The present study is the first to investigate microbial colonization of newly exposed basalt surfaces in the context of vent fluid chemistry over an extended period of time (4–293 days) by deploying basalt blocks within an established diffuse-flow vent at the 9°50′ N vent field on the East Pacific Rise. Additionally, samples obtained after a recent eruption at the same vent field allowed for comparison between experimental results and those from natural microbial re-colonization. Over 9 months, the community changed from being composed almost exclusively of Epsilonproteobacteria to a more diverse assemblage, corresponding with a potential expansion of metabolic capabilities. The process of biofilm formation appears to generate similar surface-associated communities within and across sites by selecting for a subset of fluid-associated microbes, via species sorting. Furthermore, the high incidence of shared operational taxonomic units over time and across different vent sites suggests that the microbial communities colonizing new surfaces at diffuse-flow vent sites might follow a predictable successional pattern.
Description
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 901, doi:10.3389/fmicb.2015.00901.
Embargo Date
Citation
Frontiers in Microbiology 6 (2015): 901
Cruises
Cruise ID
Cruise DOI
Vessel Name
Collections
Except where otherwise noted, this item's license is described as Attribution 4.0 International