Actin polymerization controls the activation of multidrug efflux at fertilization by translocation and fine-scale positioning of ABCB1 on microvilli

Alternative Title
Date Created
Location
DOI
10.1091/mbc.E12-06-0438
Related Materials
Replaces
Replaced By
Keywords
Abstract
Fertilization changes the structure and function of the cell surface. In sea urchins, these changes include polymerization of cortical actin and a coincident, switch-like increase in the activity of the multidrug efflux transporter ABCB1a. However, it is not clear how cortical reorganization leads to changes in membrane transport physiology. In this study, we used three-dimensional superresolution fluorescence microscopy to resolve the fine-scale movements of the transporter along polymerizing actin filaments, and we show that efflux activity is established after ABCB1a translocates to the tips of the microvilli. Inhibition of actin poly­merization or bundle formation prevents tip localization, resulting in the patching of ABCB1a at the cell surface and decreased efflux activity. In contrast, enhanced actin polymerization promotes tip localization. Finally, interference with Rab11, a regulator of apical recycling, inhibits activation of efflux activity in embryos. Together our results show that actin-mediated, short-range traffic and positioning of transporters at the cell surface regulates multidrug efflux activity and highlight the multifaceted roles of microvilli in the spatial distribution of membrane proteins.
Description
© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molecular Biology of the Cell 23 (2012): 3663-3672, doi:10.1091/mbc.E12-06-0438.
Embargo Date
Citation
Molecular Biology of the Cell 23 (2012): 3663-3672
Cruises
Cruise ID
Cruise DOI
Vessel Name
Collections
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 Unported