Sulfate reduction and possible aerobic metabolism of the sulfate-reducing bacterium Desulfovibrio oxyclinae in a chemostat coculture with Marinobacter sp. strain MB under exposure to increasing oxygen concentrations
Sulfate reduction and possible aerobic metabolism of the sulfate-reducing bacterium Desulfovibrio oxyclinae in a chemostat coculture with Marinobacter sp. strain MB under exposure to increasing oxygen concentrations
No Thumbnail Available
Date
2000-11
Authors
Sigalevich, Pavel
Baev, Mark V.
Teske, Andreas
Cohen, Yehuda
Baev, Mark V.
Teske, Andreas
Cohen, Yehuda
Linked Authors
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
10.1128/AEM.66.11.5013-5018.2000
Related Materials
Replaces
Replaced By
Keywords
Desulfovibrio oxyclinae
Sulfate-reducing bacterium
Oxic condtions
Anoxic conditions
Sulfate-reducing bacterium
Oxic condtions
Anoxic conditions
Abstract
A chemostat coculture of the sulfate-reducing bacterium Desulfovibrio oxyclinae together with a facultative aerobe heterotroph tentatively identified as Marinobacter sp. strain MB was grown under anaerobic conditions and then exposed to a stepwise-increasing oxygen influx (0 to 20% O2 in the incoming gas phase). The coculture consumed oxygen efficiently, and no residual oxygen was detected with an oxygen supply of up to 5%. Sulfate reduction persisted at all levels of oxygen input, even at the maximal level, when residual oxygen in the growth vessel was 87 µM. The portion of D. oxyclinae cells in the coculture decreased gradually from 92% under anaerobic conditions to 27% under aeration. Both absolute cell numbers and viable cell counts of the organism were the same as or even higher than those observed in the absence of oxygen input. The patterns of consumption of electron donors and acceptors suggest that aerobic incomplete oxidation of lactate to acetate is performed by D. oxyclinae under high oxygen input. Both organisms were isolated from the same oxic zone of a cyanobacterial mat where they have to adapt to daily shifts from oxic to anoxic conditions. This type of syntrophic association may occur in natural habitats, enabling sulfate-reducing bacteria to cope with periodic exposure to oxygen.
Description
Author Posting. © American Society for Microbiology, 2000. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 66 (2000): 5013-5018, doi:10.1128/AEM.66.11.5013-5018.2000.
Embargo Date
Citation
Applied and Environmental Microbiology 66 (2000): 5013-5018