Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation

Thumbnail Image
Date
2009-03-13
Authors
Antonopoulos, Dionysios A.
Huse, Susan M.
Morrison, Hilary G.
Schmidt, Thomas M.
Sogin, Mitchell L.
Young, Vincent B.
Alternative Title
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Abstract
Shifts in microbial communities are implicated in the pathogenesis of a number of gastrointestinal diseases, but we have limited understanding of the mechanisms that lead to altered community structures. One difficulty with studying these mechanisms in human subjects is the inherent baseline variability of the microbiota in different individuals that arise due to varying life histories. To try and overcome this baseline variability we employed a mouse model to control host genotype, diet and other possible influences on the microbiota. This allowed us to determine if the indigenous microbiota in such mice had a stable baseline community structure and whether this community exhibited a consistent response following antibiotic administration. We employed a tag sequencing strategy targeting the V6 hypervariable region of the bacterial small-subunit (16S) ribosomal RNA combined with massively parallel sequencing to determine the community structure of the gut microbiota. Inbred mice in a controlled environment harbored a reproducible baseline community that was significantly impacted by antibiotic administration. The ability of the gut microbial community to recover to baseline following cessation of antibiotic administration varied according to the antibiotic regimen administered. Severe antibiotic pressure resulted in reproducible long-lasting alterations in the gut microbial community including a decrease in overall diversity. The finding of stereotypic responses of the indigenous microbiota to ecologic stress implies that a better understanding of the factors that govern community structure could lead to strategies for the intentional manipulation of this ecosystem to preserve or restore a healthy microbiota.
Description
Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Infection and Immunity 77 (2009): 2367-2375, doi:10.1128/IAI.01520-08.
Embargo Date
Citation
Cruises
Cruise ID
Cruise DOI
Vessel Name