Machine learning techniques to characterize functional traits of plankton from image data

dc.contributor.author Orenstein, Eric C.
dc.contributor.author Ayata, Sakina Dorothée
dc.contributor.author Maps, Frédéric
dc.contributor.author Becker, Érica C.
dc.contributor.author Benedetti, Fabio
dc.contributor.author Biard, Tristan
dc.contributor.author de Garidel-Thoron, Thibault
dc.contributor.author Ellen, Jeffrey S.
dc.contributor.author Ferrario, Filippo
dc.contributor.author Giering, Sarah L. C.
dc.contributor.author Guy-Haim, Tamar
dc.contributor.author Hoebeke, Laura
dc.contributor.author Iversen, Morten H.
dc.contributor.author Kiørboe, Thomas
dc.contributor.author Lalonde, Jean-François
dc.contributor.author Lana, Arancha
dc.contributor.author Laviale, Martin
dc.contributor.author Lombard, Fabien
dc.contributor.author Lorimer, Tom
dc.contributor.author Martini, Séverine
dc.contributor.author Meyer, Albin
dc.contributor.author Möller, Klas O.
dc.contributor.author Niehoff, Barbara
dc.contributor.author Ohman, Mark D.
dc.contributor.author Pradalier, Cédric
dc.contributor.author Romagnan, Jean-Baptiste
dc.contributor.author Schröder, Simon-Martin
dc.contributor.author Sonnet, Virginie
dc.contributor.author Sosik, Heidi M.
dc.contributor.author Stemmann, Lars
dc.contributor.author Stock, Michiel
dc.contributor.author Terbiyik-Kurt, Tuba
dc.contributor.author Valcárcel-Pérez, Nerea
dc.contributor.author Vilgrain, Laure
dc.contributor.author Wacquet, Guillaume
dc.contributor.author Waite, Anya M.
dc.contributor.author Irisson, Jean-Olivier
dc.date.accessioned 2022-10-18T14:42:49Z
dc.date.available 2022-10-18T14:42:49Z
dc.date.issued 2022-06-30
dc.description © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Orenstein, E., Ayata, S., Maps, F., Becker, É., Benedetti, F., Biard, T., Garidel‐Thoron, T., Ellen, J., Ferrario, F., Giering, S., Guy‐Haim, T., Hoebeke, L., Iversen, M., Kiørboe, T., Lalonde, J., Lana, A., Laviale, M., Lombard, F., Lorimer, T., Martini, S., Meyer, A., Möller, K.O., Niehoff, B., Ohman, M.D., Pradalier, C., Romagnan, J.-B., Schröder, S.-M., Sonnet, V., Sosik, H.M., Stemmann, L.S., Stock, M., Terbiyik-Kurt, T., Valcárcel-Pérez, N., Vilgrain, L., Wacquet, G., Waite, A.M., & Irisson, J. Machine learning techniques to characterize functional traits of plankton from image data. Limnology and Oceanography, 67(8), (2022): 1647-1669, https://doi.org/10.1002/lno.12101. en_US
dc.description.abstract Plankton imaging systems supported by automated classification and analysis have improved ecologists' ability to observe aquatic ecosystems. Today, we are on the cusp of reliably tracking plankton populations with a suite of lab-based and in situ tools, collecting imaging data at unprecedentedly fine spatial and temporal scales. But these data have potential well beyond examining the abundances of different taxa; the individual images themselves contain a wealth of information on functional traits. Here, we outline traits that could be measured from image data, suggest machine learning and computer vision approaches to extract functional trait information from the images, and discuss promising avenues for novel studies. The approaches we discuss are data agnostic and are broadly applicable to imagery of other aquatic or terrestrial organisms. en_US
dc.description.sponsorship SDA acknowledges funding from CNRS for her sabbatical in 2018–2020. Additional support was provided by the Institut des Sciences du Calcul et des Données (ISCD) of Sorbonne Université (SU) through the support of the sponsored junior team FORMAL (From ObseRving to Modeling oceAn Life), especially through the post-doctoral contract of EO. JOI acknowledges funding from the Belmont Forum, grant ANR-18-BELM-0003-01. French co-authors also wish to thank public taxpayers who fund their salaries. This work is a contribution to the scientific program of Québec Océan and the Takuvik Joint International Laboratory (UMI3376; CNRS - Université Laval). FM was supported by an NSERC Discovery Grant (RGPIN-2014-05433). MS is supported by the Research Foundation - Flanders (FWO17/PDO/067). FB received support from ETH Zürich. MDO is supported by the Gordon and Betty Moore Foundation and the U.S. National Science Foundation. ECB is supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) under the grant agreement no. 88882.438735/2019-01. TB is supported by the French National Research Agency (ANR-19-CE01-0006). NVP is supported by the Spanish State Research Agency, Ministry of Science and Innovation (PTA2016-12822-I). FL is supported by the Institut Universitaire de France (IUF). HMS was supported by the Simons Foundation (561126) and the U.S. National Science Foundation (CCF-1539256, OCE-1655686). Emily Peacock is gratefully acknowledged for expert annotation of IFCB images. LS was supported by the Chair VISION from CNRS/Sorbonne Université. en_US
dc.identifier.citation Orenstein, E., Ayata, S., Maps, F., Becker, É., Benedetti, F., Biard, T., Garidel‐Thoron, T., Ellen, J., Ferrario, F., Giering, S., Guy‐Haim, T., Hoebeke, L., Iversen, M., Kiørboe, T., Lalonde, J., Lana, A., Laviale, M., Lombard, F., Lorimer, T., Martini, S., Meyer, A., Möller, K.O., Niehoff, B., Ohman, M.D., Pradalier, C., Romagnan, J.-B., Schröder, S.-M., Sonnet, V., Sosik, H.M., Stemmann, L.S., Stock, M., Terbiyik-Kurt, T., Valcárcel-Pérez, N., Vilgrain, L., Wacquet, G., Waite, A.M., & Irisson, J. (2022). Machine learning techniques to characterize functional traits of plankton from image data. Limnology and Oceanography, 67(8), 1647-1669. en_US
dc.identifier.doi 10.1002/lno.12101
dc.identifier.uri https://hdl.handle.net/1912/29439
dc.publisher Association for the Sciences of Limnology and Oceanography en_US
dc.relation.uri https://doi.org/10.1002/lno.12101
dc.rights Attribution 4.0 International *
dc.rights.uri http://creativecommons.org/licenses/by/4.0/ *
dc.title Machine learning techniques to characterize functional traits of plankton from image data en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 96d2e300-1d94-4ed8-8ab9-b5dd6934122d
relation.isAuthorOfPublication d959981f-72e5-4181-9487-02ae73931945
relation.isAuthorOfPublication 007ba423-5884-4d59-85bd-cb39aa4e2939
relation.isAuthorOfPublication acf6cd7c-97a9-4216-85cd-18e6eef2368c
relation.isAuthorOfPublication 10ba178a-715b-4179-8674-5cd796694d03
relation.isAuthorOfPublication a5bcc8e4-1cb6-4efc-adf6-b0106390ed58
relation.isAuthorOfPublication 742926fd-7867-4bc2-988a-1f38e9a28806
relation.isAuthorOfPublication 608dfab2-5799-4220-9754-d25d89160c79
relation.isAuthorOfPublication 2458b90d-cc22-418e-b52d-19ebdadffc54
relation.isAuthorOfPublication 53cd2e3d-7327-4fdb-92ff-1fba5cff4594
relation.isAuthorOfPublication 08763e22-ab8b-4e2b-a014-23b6261c9618
relation.isAuthorOfPublication c0d35abb-8ae2-45e7-bfec-5319a8593934
relation.isAuthorOfPublication 9754bc81-a0d7-4d4c-be33-a45919842bf7
relation.isAuthorOfPublication 80eb67b5-c55c-483e-ae3d-b84ec652d2bf
relation.isAuthorOfPublication b699a97b-5e73-4a39-91a3-7540acd836e8
relation.isAuthorOfPublication 61202d6c-dcab-41b7-bb32-efcb8b84f6b0
relation.isAuthorOfPublication ae7d0f7b-a2a7-470f-842d-e85a1bb34a18
relation.isAuthorOfPublication 87670408-2a8a-40fe-83c2-53f7635c1674
relation.isAuthorOfPublication f9f08704-745e-4756-9ada-91e26ac1a8f0
relation.isAuthorOfPublication 11c4cfaf-111a-4902-a1ae-1c6673c8419c
relation.isAuthorOfPublication 53dec6d8-0d06-45c3-9bc4-996b6cd79b97
relation.isAuthorOfPublication 459339a0-78db-41c8-8523-6fbe0f02dd6d
relation.isAuthorOfPublication f2c0fac3-3ef0-4947-88e5-f16ef7c20087
relation.isAuthorOfPublication 3d04f307-b6aa-4d29-a8f3-fac4a0d59e7f
relation.isAuthorOfPublication bf77ffe6-9e74-46b9-8ef2-1db1c0a9456a
relation.isAuthorOfPublication 0d2f55e6-5c2c-4ba3-96d1-333043f7c6cf
relation.isAuthorOfPublication 2864996c-2319-4c0b-a144-f3321edd5e61
relation.isAuthorOfPublication 5ac935c5-0f18-4d3e-bf0f-7da2394eb9e1
relation.isAuthorOfPublication b9ef3ae0-e7ff-4e0a-9ac6-ba8437ef3445
relation.isAuthorOfPublication c84bf6e0-835f-4a9b-afbf-c17cdb3a3b13
relation.isAuthorOfPublication 14dfc264-0a97-499e-8673-b5c24f6cbf49
relation.isAuthorOfPublication c83952f9-c8d8-42b5-9a02-e3f9a761d4b1
relation.isAuthorOfPublication 4e19fcb7-06be-4ee8-9b93-8dd9f206f52e
relation.isAuthorOfPublication 02cc5663-6ed6-4e19-a0ae-57c2c40ad13e
relation.isAuthorOfPublication da8d8828-ad32-4099-bcd2-5704bb16c92f
relation.isAuthorOfPublication 6f0580fb-5011-45a0-8064-9185314b2ed0
relation.isAuthorOfPublication 70eb85f2-7d56-4d5f-9400-963c35a0f694
relation.isAuthorOfPublication.latestForDiscovery 96d2e300-1d94-4ed8-8ab9-b5dd6934122d
Files
Original bundle
Now showing 1 - 2 of 2
Thumbnail Image
Name:
Limnology Oceanography - 2022 - Orenstein - Machine learning techniques to characterize functional traits of plankton.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Description:
Article
Thumbnail Image
Name:
lno12101-sup-0001-supinfo.pdf
Size:
175.67 KB
Format:
Adobe Portable Document Format
Description:
Appendix_S1
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections