A comparison of eutrophication impacts in two harbours in Hong Kong with different hydrodynamics

Thumbnail Image
Xu, J.
Yin, K.
Liu, H.
Lee, Joseph H. W.
Anderson, Donald M.
Ho, Alvin Y. T.
Harrison, Paul J.
Linked Authors
Alternative Title
Date Created
Replaced By
Phytoplankton biomass
Dissolved oxygen
Light limitation
Eutrophication impacts may vary spatially and temporally due to different physical processes. Using a 22-year time series data set (1986-2007), a comparison of eutrophication impacts between two eutrophic harbors, Victoria and Tolo Harbours, in Hong Kong with very different hydrodynamic conditions was conducted. In the highly-flushed Victoria Harbour (Victoria), the highest Chl a (13 μg L-1) occurred due to stratification in summer as a result of the input of the eutrophic Pearl River discharge, but the high flushing rate restricted nutrient utilization and the further accumulation of algal biomass. In other seasons, vertical mixing induced light limitation and horizontal dilution led to low Chl a (< 2 μg L-1) and no spring bloom. Few hypoxic events (DO < 2 mg L-1) occurred due to strong tidal mixing. Therefore, Victoria is resilient to nutrient enrichment. In contrast, in the weakly-flushed Tolo Harbour (Tolo), year long stratification, the long residence times and weak tidal currents favored algal growth, resulting in a spring diatom bloom and high Chl a (up to 30 μg L-1) all year and frequent hypoxic events in summer. Hence, Tolo is susceptible to nutrient enrichment and it responded to nutrient reduction since sewage treatment resulted in a 32-38% decrease in algal biomass in Tolo, but not in Victoria. A significant (11-22%) reduction in bottom DO in the both harbors after sewage treatment was due to a decrease in the organic loading from sewage treatment or the diversion.
Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Marine Systems 83 (2010): 276-286, doi:10.1016/j.jmarsys.2010.04.002.
Embargo Date
Cruise ID
Cruise DOI
Vessel Name