Accounting for biological and physical sources of acoustic backscatter improves estimates of zooplankton biomass

Thumbnail Image
Date
2007-09-26
Authors
Warren, Joseph D.
Wiebe, Peter H.
Linked Authors
Alternative Title
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Acoustic backscatter
Zooplankton
Gulf of Maine
Abstract
In order to convert measurements of backscattered acoustic energy to estimates of abundance and taxonomic information about the zooplankton community, all of the scattering processes in the water column need to be identified and their scattering contributions quantified. Zooplankton populations in the eastern edge of Wilkinson Basin in the Gulf of Maine in the Northwest Atlantic were surveyed in October 1997. Net tow samples at different depths, temperature and salinity profiles, and multiple frequency acoustic backscatter measurements from the upper 200 meters of the water column were collected. Zooplankton samples were identified, enumerated, and measured. Temperature and salinity profiles were used to estimate the amount of turbulent microstructure in the water column. These data sets were used with theoretical acoustic scattering models to calculate the contributions of both biological and physical scatterers to the overall measured scattering level. The output of these predictions shows that the dominant source of acoustic backscatter varies with depth and acoustic frequency in this region. By quantifying the contributions from multiple scattering sources, acoustic backscatter becomes a better measure of net-collected zooplankton biomass.
Description
Author Posting. © NRC Canada, 2008. This is the author's version of the work. It is posted here by permission of NRC Canada for personal use, not for redistribution. The definitive version was published in Canadian Journal of Fisheries and Aquatic Sciences 65 (2008): 1321-1333, doi:10.1139/F08-047.
Embargo Date
Citation
Cruises
Cruise ID
Cruise DOI
Vessel Name
Collections