Arkhipova Irina R.

No Thumbnail Available
Last Name
Arkhipova
First Name
Irina R.
ORCID
0000-0002-4805-1339

Search Results

Now showing 1 - 2 of 2
  • Article
    Functional organization of hsp70 cluster in camel (Camelus dromedarius) and other mammals
    (Public Library of Science, 2011-11-09) Garbuz, David G. ; Astakhova, Lubov N. ; Zatsepina, Olga G. ; Arkhipova, Irina R. ; Nudler, Eugene ; Evgenev, Michael B.
    Heat shock protein 70 (Hsp70) is a molecular chaperone providing tolerance to heat and other challenges at the cellular and organismal levels. We sequenced a genomic cluster containing three hsp70 family genes linked with major histocompatibility complex (MHC) class III region from an extremely heat tolerant animal, camel (Camelus dromedarius). Two hsp70 family genes comprising the cluster contain heat shock elements (HSEs), while the third gene lacks HSEs and should not be induced by heat shock. Comparison of the camel hsp70 cluster with the corresponding regions from several mammalian species revealed similar organization of genes forming the cluster. Specifically, the two heat inducible hsp70 genes are arranged in tandem, while the third constitutively expressed hsp70 family member is present in inverted orientation. Comparison of regulatory regions of hsp70 genes from camel and other mammals demonstrates that transcription factor matches with highest significance are located in the highly conserved 250-bp upstream region and correspond to HSEs followed by NF-Y and Sp1 binding sites. The high degree of sequence conservation leaves little room for putative camel-specific regulatory elements. Surprisingly, RT-PCR and 5′/3′-RACE analysis demonstrated that all three hsp70 genes are expressed in camel's muscle and blood cells not only after heat shock, but under normal physiological conditions as well, and may account for tolerance of camel cells to extreme environmental conditions. A high degree of evolutionary conservation observed for the hsp70 cluster always linked with MHC locus in mammals suggests an important role of such organization for coordinated functioning of these vital genes.
  • Article
    Molecular dissection of Penelope transposable element regulatory machinery
    (Oxford University Press, 2008-03-04) Schostak, Nataliya ; Pyatkov, Konstantin ; Zelentsova, Elena ; Arkhipova, Irina R. ; Shagin, Dmitrii ; Shagina, Irina ; Mudrik, Elena ; Blintsov, Anatolii ; Clark, Ivan ; Finnegan, David J. ; Evgenev, Michael B.
    Penelope-like elements (PLEs) represent a new class of retroelements identified in more than 80 species belonging to at least 10 animal phyla. Penelope isolated from Drosophila virilis is the only known transpositionally active representative of this class. Although the size and structure of the Penelope major transcript has been previously described in both D. virilis and D. melanogaster transgenic strains, the architecture of the Penelope regulatory region remains unknown. In order to determine the localization of presumptive Penelope promoter and enhancer-like elements, segments of the putative Penelope regulatory region were linked to a CAT reporter gene and introduced into D. melanogaster by P-element-mediated transformation. The results obtained using ELISA to measure CAT expression levels and RNA studies, including RT–PCR, suggest that the active Penelope transposon contains an internal promoter similar to the TATA-less promoters of LINEs. The results also suggest that some of the Penelope regulatory sequences control the preferential expression in the ovaries of the adult flies by enhancing expression in the ovary and reducing expression in the carcass. The possible significance of the intron within Penelope for the function and evolution of PLEs, and the effect of Penelope insertions on adjacent genes, are discussed.