Ito Garrett T.

No Thumbnail Available
Last Name
Ito
First Name
Garrett T.
ORCID

Search Results

Now showing 1 - 1 of 1
  • Thesis
    Mantle plume-midocean ridge interaction : geophysical observations and mantle dynamics
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1996-09) Ito, Garrett T.
    We analyze bathymetric and gravity anomalies at five plume-ridge systems to constrain crustal and mantle density structure at these prominent oceanic features. Numerical models are then used to explore the physical mechanisms controlling plume-ridge interaction and to place theoretical constraints on the temperature anomalies, dimensions, and fluxes of the Icelandic and Galapagos plumes. In Chapter 1 we analyze bathymetric and gravity anomalies along the hotspot-influenced Galapagos Spreading Center. We find that the Galapagos plume generates along-axis bathymetric and mantle-Bouguer gravity anomalies (MBA) that extend >500 km east and west of the Galapagos Islands. The along-axis MBA becomes increasingly negative towards the plume center, reaching a minimum of ~-90 mGal near 91°W, and axial topography shallows by ~1.1 km toward the plume. These variations in MBA and bathymetry are attributed to the combined effects of crustal thickening and anomalously low mantle densities, both of which are due to a mantle temperature anomaly imposed beneath the ridge by the Galapagos plume. Passive mantle flow models predict a temperature anomaly of 50±25°C is sufficient to produce the 2-4 km excess crust required to explain the along-axis anomalies. 70-75% of the along-axis bathymetric and MBA variations are estimated to arise from the crust with the remaining 25-30% generated by the anomalously hot, thus low-density mantle. Along Cocos-plate isochrons, bathymetric and MBA variations increase with increasing isochron age, suggesting the subaxial mantle temperature anomaly was greater in the past when the plume was closer, to the ridge axis. In addition to the Galapagos plume-ridge system, in Chapter 2 we examine alongisochron bathymetric and MBA variations at four other plume-ridge systems associated with the Iceland, Azores, Easter and Tristan hotspots. We show that residual bathymetry (up to 4.7 km) and mantle-Bouguer gravity anomalies (up to -340 mGal) are greatest at on-axis plumes and decreases with increasing ridge-hotspot separation distance, until becoming insignificant at a plume-ridge separation of ~500 km. Along-isochron widths of bathymetric anomalies (up to 2700 km) decrease with increasing paleo-spreading rate, reflecting the extent to which plume material flows along-axis before being swept away by the spreading lithosphere. Scaling arguments suggest an average ridgeward plume flux of -2.2x106 km/my. Assuming that the amplitudes of the MBA and bathymetric anomalies reflect crustal thickness and mantle density variations, passive mantle flow models predict maximum subaxial mantle temperature anomalies to be 150-225°C for ridge-center plumes, which decrease as the ridges migrate away from the plumes. The dynamics of mantle flow and melting at ridge-centered plumes are investigated in Chapters 3 using three-dimensional, variable-viscosity, numerical models. Three buoyancy sources are examined: temperature, melt depletion, and melt retention. The width W to which a plume spreads along a ridge axis depends on plume volume flux Q, full spreading rate U, buoyancy number B = (QΔρg)/(48η0U2), and ambient/plume viscosity contrast ϒ according to W=2.37(Q/U)l/2(Bϒ)0.04. Thermal buoyancy is first order in controlling along-axis plume spreading while latent heat loss due to melting, and depletion and retention buoyancy forces contribute second order effects. Two end-member models of the Iceland-Mid-Atlantic Ridge (MAR) system are examined. The first endmember model has a broad plume source of radius 300 km, temperature anomaly of 75°C, and volume flux of 1.2xl07 km3/my. The second model has a narrower plume source of radius 60 km, temperature anomaly of l70°C, and flux of 2.1 x106 km3/my. The first model predicts successfully the observed crustal thickness, topographic, and MBA variations along the MAR, but the second model requires substantial along-axis melt transport in order to explain the observed along-axis variations in crustal thickness, bathymetry, and gravity. We favor this second model because it predicts a mantle P-wave velocity reduction in the plume of ~2% as consistent with recent seismic observations beneath Iceland. Finally in Chapter 4 we use three-dimensional numerical models to investigate the interaction of plumes and migrating midocean ridges. Scaling laws of axial plume spreading width Ware derived first for stationary ridges and off-axis plumes, which yield results consistent with those obtained from independent studies of Ribe [1996]. Wand the maximum plume-ridge interaction distance Xmax again scale with (Q/U)l/2 as in the case of ridge-centered plumes and increase with ϒ and buoyancy number. In the case of a migrating ridge, Xmax is reduced when a ridge migrates toward the plume due to excess drag of the faster-moving leading plate, and enhanced when a ridge migrates away from the plume due to reduced drag of the slower-moving trailing plate. Thermal erosion of the lithospheric boundary layer by the previously ridge-centered plume further enhances Wand Xmax but to a degree that is secondary to the differential migration rates of the two plates. Model predictions are compared with observed along-isochron bathymetric and MBA variations at the Galapagos plume-ridge system. The anomaly amplitudes and widths, as well as the increase in anomaly amplitude with age are predicted with a plume source temperature anomaly of 80-120°C, radius of 80-100 km, and volume flux of 4.5x106 km3/m.y. Our numerical models also predict crustal production rates of the Galapagos Islands consistent with those estimated independently using the observed island topography. Predictions of the geochemical signature of the plume along the present-day ridge suggest that mixing between the plume and ambient mantle sources is unlikely to occur in the asthenosphere or shallow crust, but most likely deeper in the mantle possibly by entrainment of ambient mantle as the plume ascends through the depleted portion of the mantle from its deep source reservoir.