Henderson Paul B.

No Thumbnail Available
Last Name
Henderson
First Name
Paul B.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Preprint
    Geochemical and physical sources of radon variation in a subterranean estuary — implications for groundwater radon activities in submarine groundwater discharge studies
    ( 2007-12-13) Dulaiova, Henrieta ; Gonneea, Meagan E. ; Henderson, Paul B. ; Charette, Matthew A.
    Submarine groundwater discharge (SGD), in form of springs and diffuse seepage, has long been recognized as a source of chemical constituents to the coastal ocean. Because groundwater is two to four orders of magnitude richer in radon than surface water, it has been used as both a qualitative and a quantitative tracer of groundwater discharge. Besides this large activity gradient, the other perceived advantage of radon stems from its classification as noble gas; that is, its chemical behavior is expected not to be influenced by salinity, redox, and diagenetic conditions present in aquatic environments. During our three-year monthly sampling of the subterranean estuary (STE) in Waquoit Bay, MA, we found highly variable radon activities (50-1600 dpm L-1) across the fresh-saline interface of the aquifer. We monitored pore water chemistry and radon activity at 8 fixed depths spanning from 2 to 5.6 m across the STE, and found seasonal fluctuations in activity at depths where elevated radon was observed. We postulate that most of pore water 222Rn is produced from particle-surface bound 226Ra, and that the accumulation of this radium is likely regulated by the presence of manganese (hydr)oxides. Layers of manganese (hydr)oxides form at the salinity transition zone (STZ), where water with high salinity, high manganese, and low redox potential mixes with fresh water. Responding to the seasonality of aquifer recharge, the location of the STZ and the layers with radium enriched manganese (hydr)oxide follows the seasonal land- or bay-ward movement of the freshwater lens. This results in seasonal changes in the depth where elevated radon activities are observed. The conclusion of our study is that the freshwater part of the STE has a radon signature that is completely different from the STZ or recirculated sea water. Therefore, the radon activity in SGD will depend on the ratio of fresh and recirculated seawater in the discharging groundwater.
  • Article
    Lingering radioactivity at the Bikini and Enewetak Atolls
    (Elsevier, 2017-10-30) Buesseler, Ken O. ; Charette, Matthew A. ; Pike, Steven M. ; Henderson, Paul B. ; Kipp, Lauren
    We made an assessment of the levels of radionuclides in the ocean waters, seafloor and groundwater at Bikini and Enewetak Atolls where the US conducted nuclear weapons tests in the 1940's and 50's. This included the first estimates of submarine groundwater discharge (SGD) derived from radium isotopes that can be used here to calculate radionuclide fluxes in to the lagoon waters. While there is significant variability between sites and sample types, levels of plutonium (239,240Pu) remain several orders of magnitude higher in lagoon seawater and sediments than what is found in rest of the world's oceans. In contrast, levels of cesium-137 (137Cs) while relatively elevated in brackish groundwater are only slightly higher in the lagoon water relative to North Pacific surface waters. Of special interest was the Runit dome, a nuclear waste repository created in the 1970's within the Enewetak Atoll. Low seawater ratios of 240Pu/239Pu suggest that this area is the source of about half of the Pu in the Enewetak lagoon water column, yet radium isotopes suggest that SGD from below the dome is not a significant Pu source. SGD fluxes of Pu and Cs at Bikini were also relatively low. Thus radioactivity associated with seafloor sediments remains the largest source and long term repository for radioactive contamination. Overall, Bikini and Enewetak Atolls are an ongoing source of Pu and Cs to the North Pacific, but at annual rates that are orders of magnitude smaller than delivered via close-in fallout to the same area.
  • Article
    Shelf-basin interactions and water mass residence times in the western Arctic Ocean: Insights provided by radium isotopes
    (American Geophysical Union, 2019-04-26) Kipp, Lauren ; Kadko, David C. ; Pickart, Robert S. ; Henderson, Paul B. ; Moore, Willard S. ; Charette, Matthew A.
    Radium isotopes are produced through the decay of thorium in sediments and are soluble in seawater; thus, they are useful for tracing ocean boundary‐derived inputs to the ocean. Here we apply radium isotopes to study continental inputs and water residence times in the Arctic Ocean, where land‐ocean interactions are currently changing in response to rising air and sea temperatures. We present the distributions of radium isotopes measured on the 2015 U.S. GEOTRACES transect in the Western Arctic Ocean and combine this data set with historical radium observations in the Chukchi Sea and Canada Basin. The highest activities of radium‐228 were observed in the Transpolar Drift and the Chukchi shelfbreak jet, signaling that these currents are heavily influenced by interactions with shelf sediments. The ventilation of the halocline with respect to inputs from the Chukchi shelf occurs on time scales of ≤19–23 years. Intermediate water ventilation time scales for the Makarov and Canada Basins were determined to be ~20 and >30 years, respectively, while deep water residence times in these basins were on the order of centuries. The radium distributions and residence times described in this study serve as a baseline for future studies investigating the impacts of climate change on the Arctic Ocean.