Hu Sarah K

No Thumbnail Available
Last Name
Hu
First Name
Sarah K
ORCID
0000-0002-4439-1360

Search Results

Now showing 1 - 2 of 2
  • Article
    Daily dynamics of contrasting spring algal blooms in Santa Monica Bay (central Southern California Bight)
    (Society for Applied Microbiology, 2022-07-26) Ollison, Gerid A. ; Hu, Sarah K. ; Hopper, Julie V. ; Stewart, Brittany P. ; Smith, Jayme ; Beatty, Jennifer L. ; Rink, Laura K. ; Caron, David A.
    Protistan algae (phytoplankton) dominate coastal upwelling ecosystems where they form massive blooms that support the world's most important fisheries and constitute an important sink for atmospheric CO2. Bloom initiation is well understood, but the biotic and abiotic forces that shape short-term dynamics in community composition are still poorly characterized. Here, high-frequency (daily) changes in relative abundance dynamics of the metabolically active protistan community were followed via expressed 18S V4 rRNA genes (RNA) throughout two algal blooms during the spring of 2018 and 2019 in Santa Monica Bay (central Southern California Bight). A diatom bloom formed after wind-driven, nutrient upwelling events in both years, but different taxa dominated each year. Whereas diatoms bloomed following elevated nutrients and declined after depletion each year, a massive dinoflagellate bloom manifested under relatively low inorganic nitrogen conditions following diatom bloom senescence in 2019 but not 2018. Network analysis revealed associations between diatoms and cercozoan putative parasitic taxa and syndinean parasites during 2019 that may have influenced the demise of the diatoms, and the transition to a dinoflagellate-dominated bloom.
  • Article
    Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities
    (National Academy of Sciences, 2021-02-09) Coesel, Sacha N. ; Durham, Bryndan P. ; Groussman, Ryan D. ; Hu, Sarah K. ; Caron, David A. ; Morales, Rhonda L. ; Ribalet, François ; Armbrust, E. Virginia
    The 24-h cycle of light and darkness governs daily rhythms of complex behaviors across all domains of life. Intracellular photoreceptors sense specific wavelengths of light that can reset the internal circadian clock and/or elicit distinct phenotypic responses. In the surface ocean, microbial communities additionally modulate nonrhythmic changes in light quality and quantity as they are mixed to different depths. Here, we show that eukaryotic plankton in the North Pacific Subtropical Gyre transcribe genes encoding light-sensitive proteins that may serve as light-activated transcription factors, elicit light-driven electrical/chemical cascades, or initiate secondary messenger-signaling cascades. Overall, the protistan community relies on blue light-sensitive photoreceptors of the cryptochrome/photolyase family, and proteins containing the Light-Oxygen-Voltage (LOV) domain. The greatest diversification occurred within Haptophyta and photosynthetic stramenopiles where the LOV domain was combined with different DNA-binding domains and secondary signal-transduction motifs. Flagellated protists utilize green-light sensory rhodopsins and blue-light helmchromes, potentially underlying phototactic/photophobic and other behaviors toward specific wavelengths of light. Photoreceptors such as phytochromes appear to play minor roles in the North Pacific Subtropical Gyre. Transcript abundance of environmental light-sensitive protein-encoding genes that display diel patterns are found to primarily peak at dawn. The exceptions are the LOV-domain transcription factors with peaks in transcript abundances at different times and putative phototaxis photoreceptors transcribed throughout the day. Together, these data illustrate the diversity of light-sensitive proteins that may allow disparate groups of protists to respond to light and potentially synchronize patterns of growth, division, and mortality within the dynamic ocean environment.