Resing Joseph A.

No Thumbnail Available
Last Name
Resing
First Name
Joseph A.
ORCID
0000-0002-7334-4176

Search Results

Now showing 1 - 10 of 10
  • Article
    A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific
    (Copernicus Publications on behalf of the European Geosciences Union, 2016-10-17) Hawco, Nicholas J. ; Ohnemus, Daniel C. ; Resing, Joseph A. ; Twining, Benjamin S. ; Saito, Mak A.
    Cobalt is a nutrient to phytoplankton, but knowledge about its biogeochemical cycling is limited, especially in the Pacific Ocean. Here, we report sections of dissolved cobalt and labile dissolved cobalt from the US GEOTRACES GP16 transect in the South Pacific. The cobalt distribution is closely tied to the extent and intensity of the oxygen minimum zone in the eastern South Pacific with highest concentrations measured at the oxycline near the Peru margin. Below 200 m, remineralization and circulation produce an inverse relationship between cobalt and dissolved oxygen that extends throughout the basin. Within the oxygen minimum zone, elevated concentrations of labile cobalt are generated by input from coastal sources and reduced scavenging at low O2. As these high cobalt waters are upwelled and advected offshore, phytoplankton export returns cobalt to low-oxygen water masses underneath. West of the Peru upwelling region, dissolved cobalt is less than 10 pM in the euphotic zone and strongly bound by organic ligands. Because the cobalt nutricline within the South Pacific gyre is deeper than in oligotrophic regions in the North and South Atlantic, cobalt involved in sustaining phytoplankton productivity in the gyre is heavily recycled and ultimately arrives from lateral transport of upwelled waters from the eastern margin. In contrast to large coastal inputs, atmospheric deposition and hydrothermal vents along the East Pacific Rise appear to be minor sources of cobalt. Overall, these results demonstrate that oxygen biogeochemistry exerts a strong influence on cobalt cycling.
  • Article
    Hydrothermal activity and seismicity at teahitia seamount: Reactivation of the society islands hotspot?
    (Frontiers Media, 2020-02-21) German, Christopher R. ; Resing, Joseph A. ; Xu, Guangyu ; Yeo, Isobel A. ; Walker, Sharon L. ; Devey, Colin W. ; Moffett, James W. ; Cutter, Gregory A. ; Hyvernaud, Olivier ; Reymond, Dominique
    Along mid-ocean ridges, submarine venting has been found at all spreading rates and in every ocean basin. By contrast, intraplate hydrothermal activity has only been reported from five locations, worldwide. Here we extend the time series at one of those sites, Teahitia Seamount, which was first shown to be hydrothermally active in 1983 but had not been revisited since 1999. Previously, submersible investigations had led to the discovery of low-temperature (≤30°C) venting associated with the summit of Teahitia Seamount at ≤1500 m. In December 2013 we returned to the same site at the culmination of the US GEOTRACES Eastern South Tropical Pacific (GP16) transect and found evidence for ongoing venting in the form of a non-buoyant hydrothermal plume at a depth of 1400 m. Multi-beam mapping revealed the same composite volcano morphology described previously for Teahitia including four prominent cones. The plume overlying the summit showed distinct in situ optical backscatter and redox anomalies, coupled with high concentrations of total dissolvable Fe (≤186 nmol/L) and Mn (≤33 nmol/L) that are all diagnostic of venting at the underlying seafloor. Continuous seismic records from 1986-present reveal a ∼15 year period of quiescence at Teahitia, following the seismic crisis that first stimulated its submersible-led investigation. Since 2007, however, the frequency of seismicity at Teahitia, coupled with the low magnitude of those events, are suggestive of magmatic reactivation. Separately, distinct seismicity at the adjacent Rocard seamount has also been attributed to submarine extrusive volcanism in 2011 and in 2013. Theoretical modeling of the hydrothermal plume signals detected suggest a minimum heat flux of 10 MW at the summit of Teahitia. Those model simulations can only be sourced from an area of low-temperature venting such as that originally reported from Teahitia if the temperature of the fluids exiting the seabed has increased significantly, from ≤30°C to ∼70°C. These model seafloor temperatures and our direct plume observations are both consistent with reports from Loihi Seamount, Hawaii, ∼10 year following an episode of seafloor volcanism. We hypothesize that the Society Islands hotspot may be undergoing a similar episode of both magmatic and hydrothermal reactivation.
  • Article
    Hydrothermal exploration of the Fonualei Rift and Spreading Center and the Northeast Lau Spreading Center
    (American Geophysical Union, 2006-11-29) German, Christopher R. ; Resing, Joseph A. ; Prien, R. D. ; Walker, Sharon L. ; Edmonds, Henrietta N. ; Langmuir, Charles H.
    We report evidence for active hydrothermal venting along two back-arc spreading centers of the NE Lau Basin: the Fonualei Rift and Spreading Center (FRSC) and the Northeast Lau Spreading Center (NELSC). The ridge segments investigated here are of particular interest as the potential source of a mid-water hydrothermal plume (1500–2000 m depth) which extends more than 2000 km across the SW Pacific Ocean dispersing away from an apparent origin close to the most northeastern limits of the Lau Basin. Our results indicate the presence of at least four new hydrothermal plume sources, three along the FRSC and one on the NELSC, the latter situated within 150 km of the maximum for the previously identified SW Pacific regional-scale plume. However, TDFe and TDMn concentrations in the southernmost FRSC plume that we have identified only reach values of 19 and 13 nmol/L and dissolved 3He anomalies in the same plume are also small, both in relation to the SW Pacific plume and to local background, which shows evidence for extensive 3He enrichment throughout the entire Lau Basin water column. Our results reveal no evidence for a single major point hydrothermal source anywhere in the NE Lau Basin. Instead, we conclude that the regional-scale SW Pacific hydrothermal plume most probably results from the cumulative hydrothermal output of the entire topographically restricted Lau Basin, discharging via its NE-most corner.
  • Dataset
    Profiles of dissolved trace elements collected using a trace-metal clean rosette from surface to 1000m depth from two CLIVAR P16 cruises in 2005 and 2006
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-10-02) Landing, William M. ; Measures, Christopher I. ; Resing, Joseph A.
    Profiles of dissolved trace elements collected using a trace-metal clean rosette from surface to 1000m depth from two CLIVAR P16 cruises in 2005 and 2006. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/778403
  • Dataset
    Concentrations of dissolved aluminum (Al) in samples collected during the U.S. GEOTRACES EPZT cruise (R/V Thomas G. Thompson TN303) from October to December 2013
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2020-07-31) Resing, Joseph A. ; Sedwick, Peter N.
    Concentrations of dissolved aluminum in samples collected on the U.S. GEOTRACES EPZT cruise. These Al data were collected as a part of the US GEOTRACES EPZT cruise and were initially reported by Resing et al., (2015). Those data were analyzed and processed at sea. The data reported here have been corrected, based on reevaluating peak processing, drift corrections, and through the removal of errant data points. Additional missing data points have been also been added. Those data points are mostly from the Fish surface ocean sampler. These revised data are reported in Ho et al. (2019). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/819735
  • Dataset
    DOC, POC, d13C-POC, PN from a diffuse vent in West Mata sampled in May 2009 using ROV Jason II deployed from R/V Thomas Thompson.
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-04-15) Lin, Huei-Ting ; Butterfield, David A. ; Baker, Edward T. ; Resing, Joseph A. ; Huber, Julie ; Cowen, James
    DOC, POC, d13C-POC, PN from a diffuse vent in West Mata sampled in May 2009 using ROV Jason II deployed from R/V Thomas Thompson. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/844580
  • Article
    Eruptive modes and hiatus of volcanism at West Mata seamount, NE Lau basin : 1996–2012
    (John Wiley & Sons, 2014-10-31) Embley, Robert W. ; Merle, Susan G. ; Baker, Edward T. ; Rubin, Kenneth H. ; Lupton, John E. ; Resing, Joseph A. ; Dziak, Robert P. ; Lilley, Marvin D. ; Chadwick, William W. ; Shank, Timothy M. ; Greene, Ronald ; Walker, Sharon L. ; Haxel, Joseph H. ; Olson, Eric J. ; Baumberger, Tamara
    We present multiple lines of evidence for years to decade-long changes in the location and character of volcanic activity at West Mata seamount in the NE Lau basin over a 16 year period, and a hiatus in summit eruptions from early 2011 to at least September 2012. Boninite lava and pyroclasts were observed erupting from its summit in 2009, and hydroacoustic data from a succession of hydrophones moored nearby show near-continuous eruptive activity from January 2009 to early 2011. Successive differencing of seven multibeam bathymetric surveys of the volcano made in the 1996–2012 period reveals a pattern of extended constructional volcanism on the summit and northwest flank punctuated by eruptions along the volcano's WSW rift zone (WSWRZ). Away from the summit, the volumetrically largest eruption during the observational period occurred between May 2010 and November 2011 at ∼2920 m depth near the base of the WSWRZ. The (nearly) equally long ENE rift zone did not experience any volcanic activity during the 1996–2012 period. The cessation of summit volcanism recorded on the moored hydrophone was accompanied or followed by the formation of a small summit crater and a landslide on the eastern flank. Water column sensors, analysis of gas samples in the overlying hydrothermal plume and dives with a remotely operated vehicle in September 2012 confirmed that the summit eruption had ceased. Based on the historical eruption rates calculated using the bathymetric differencing technique, the volcano could be as young as several thousand years.
  • Article
    Methane, manganese, and helium in hydrothermal plumes following volcanic eruptions on the East Pacific Rise near 9°50′N
    (American Geophysical Union, 2008-06-28) Love, Brooke A. ; Resing, Joseph A. ; Cowen, James P. ; Lupton, John E. ; Fornari, Daniel J. ; Shank, Timothy M. ; Biller, Dondra
    As part of a rapid response cruise in May 2006, we surveyed water column hydrothermal plumes and bottom conditions on the East Pacific Rise between 9°46.0′N and 9°57.6′N, where recent seafloor volcanic activity was suspected. Real-time measurements included temperature, light transmission, and salinity. Samples of the plume waters were analyzed for methane, manganese, helium concentrations, and the δ 13C of methane. These data allow us to examine the effects of the 2005–2006 volcanic eruption(s) on plume chemistry. Methane and manganese are sensitive tracers of hydrothermal plumes, and both were present in high concentrations. Methane reached 347 nM in upper plume samples (250 m above seafloor) and exceeded 1085 nM in a near-bottom sample. Mn reached 54 nM in the upper plume and 98 nM in near-bottom samples. The concentrations of methane and Mn were higher than measurements made after a volcanic eruption in the same area in 1991, but the ratio of CH4/Mn, at 6.7, is slightly lower, though still well above the ratios measured in chronic plumes. High concentrations of methane in near-bottom samples were associated with areas of microbial mats and diffuse venting documented in seafloor imagery. The isotopic composition of the methane carbon shows evidence of active microbial oxidation; however, neither the fractionation factor nor the source of the eruption-associated methane can be determined with any certainty. Considerable scatter in the isotopic data is due to diverse sources for the methane as well as fractionation as methane is consumed. One sample at +21‰ versus Peedee belemnite standard is among the most enriched methane carbon values reported in a hydrothermal plume to date.
  • Article
    Organic biogeochemistry in West Mata, NE Kau hydrothermal vent fields
    (American Geophysical Union, 2021-03-17) Lin, Huei-Ting ; Butterfield, David A. ; Baker, Edward T. ; Resing, Joseph A. ; Huber, Julie A. ; Cowen, James P.
    The impact of submarine hydrothermal systems on organic carbon in the ocean—one of the largest fixed carbon reservoirs on Earth—could be profound. Yet, different vent sites show diverse fluid chemical compositions and the subsequent biological responses. Observations from various vent sites are to evaluate hydrothermal systems' impact on the ocean carbon cycle. A response cruise in May 2009 to an on-going submarine eruption at West Mata Volcano, northeast Lau Basin, provided an opportunity to quantify the organic matter production in a back-arc spreading hydrothermal system. Hydrothermal vent fluids contained elevated dissolved organic carbon, particulate organic carbon (POC), and particulate nitrogen (PN) relative to background seawater. The δ13C-POC values for suspended particles in the diffuse vent fluids (−15.5‰ and −12.3‰) are distinct from those in background seawater (−23 ± 1‰), indicative of unique carbon synthesis pathways of the vent microbes from the seawater counterparts. The first dissolved organic nitrogen concentrations reported for diffuse vents were similar to or higher than those for background seawater. Enhanced nitrogen fixation and denitrification removed 37%–89% of the total dissolved nitrogen in the recharging background seawater in the hydrothermal vent flow paths. The hydrothermal plume samples were enriched in POC and PN, indicating enhanced biological production. The total “dark” organic carbon production within the plume matches the thermodynamic prediction based on available reducing chemical substances supplied to the plume. This research combines the measured organic carbon contents with thermodynamic modeled results and demonstrates the importance of hydrothermal activities on the water column carbon production in the deep ocean.
  • Article
    The GEOTRACES Intermediate Data Product 2017
    (Elsevier, 2018-06-01) Schlitzer, Reiner ; Anderson, Robert F. ; Dodas, Elena Masferrer ; Lohan, Maeve C. ; Geibert, Walter ; Tagliabue, Alessandro ; Bowie, Andrew R. ; Jeandel, Catherine ; Maldonado, Maria T. ; Landing, William M. ; Cockwell, Donna ; Abadie, Cyril ; Abouchami, Wafa ; Achterberg, Eric P. ; Agather, Alison ; Aguliar-Islas, Ana ; van Aken, Hendrik M. ; Andersen, Morten ; Archer, Corey ; Auro, Maureen E. ; Baar, Hein J. W. de ; Baars, Oliver ; Baker, Alex R. ; Bakker, Karel ; Basak, Chandranath ; Baskaran, Mark ; Bates, Nicholas R. ; Bauch, Dorothea ; van Beek, Pieter ; Behrens, Melanie K. ; Black, Erin E. ; Bluhm, Katrin ; Bopp, Laurent ; Bouman, Heather ; Bowman, Katlin ; Bown, Johann ; Boyd, Philip ; Boye, Marie ; Boyle, Edward A. ; Branellec, Pierre ; Bridgestock, Luke ; Brissebrat, Guillaume ; Browning, Thomas A. ; Bruland, Kenneth W. ; Brumsack, Hans-Jürgen ; Brzezinski, Mark A. ; Buck, Clifton S. ; Buck, Kristen N. ; Buesseler, Ken O. ; Bull, Abby ; Butler, Edward ; Cai, Pinghe ; Cámara Mor, Patricia ; Cardinal, Damien ; Carlson, Craig ; Carrasco, Gonzalo ; Casacuberta, Nuria ; Casciotti, Karen L. ; Castrillejo, Maxi ; Chamizo, Elena ; Chance, Rosie ; Charette, Matthew A. ; Chaves, Joaquin E. ; Cheng, Hai ; Chever, Fanny ; Christl, Marcus ; Church, Thomas M. ; Closset, Ivia ; Colman, Albert S. ; Conway, Tim M. ; Cossa, Daniel ; Croot, Peter L. ; Cullen, Jay T. ; Cutter, Gregory A. ; Daniels, Chris ; Dehairs, Frank ; Deng, Feifei ; Dieu, Huong Thi ; Duggan, Brian ; Dulaquais, Gabriel ; Dumousseaud, Cynthia ; Echegoyen-Sanz, Yolanda ; Edwards, R. Lawrence ; Ellwood, Michael J. ; Fahrbach, Eberhard ; Fitzsimmons, Jessica N. ; Flegal, A. Russell ; Fleisher, Martin Q. ; van de Flierdt, Tina ; Frank, Martin ; Friedrich, Jana ; Fripiat, Francois ; Fröllje, Henning ; Galer, Stephen J. G. ; Gamo, Toshitaka ; Ganeshram, Raja S. ; Garcia-Orellana, Jordi ; Garcia Solsona, Ester ; Gault-Ringold, Melanie ; George, Ejin ; Gerringa, Loes J. A. ; Gilbert, Melissa ; Godoy, Jose Marcus ; Goldstein, Steven L. ; Gonzalez, Santiago ; Grissom, Karen ; Hammerschmidt, Chad R. ; Hartman, Alison ; Hassler, Christel ; Hathorne, Ed C. ; Hatta, Mariko ; Hawco, Nicholas J. ; Hayes, Christopher T. ; Heimbürger, Lars-Eric ; Helgoe, Josh ; Heller, Maija Iris ; Henderson, Gideon M. ; Henderson, Paul B. ; van Heuven, Steven ; Ho, Peng ; Horner, Tristan J. ; Hsieh, Yu-Te ; Huang, Kuo-Fang ; Humphreys, Matthew P. ; Isshiki, Kenji ; Jacquot, Jeremy E. ; Janssen, David J. ; Jenkins, William J. ; John, Seth ; Jones, Elizabeth M. ; Jones, Janice L. ; Kadko, David ; Kayser, Rick ; Kenna, Timothy C. ; Khondoker, Roulin ; Kim, Taejin ; Kipp, Lauren ; Klar, Jessica K. ; Klunder, Maarten ; Kretschmer, Sven ; Kumamoto, Yuichiro ; Laan, Patrick ; Labatut, Marie ; Lacan, Francois ; Lam, Phoebe J. ; Lambelet, Myriam ; Lamborg, Carl H. ; le Moigne, Frederique ; Le Roy, Emilie ; Lechtenfeld, Oliver J. ; Lee, Jong-Mi ; Lherminier, Pascale ; Little, Susan ; López-Lora, Mercedes ; Lu, Yanbin ; Masque, Pere ; Mawji, Edward ; McClain, Charles R. ; Measures, Christopher I. ; Mehic, Sanjin ; Menzel Barraqueta, Jan-Lukas ; Merwe, Pier van der ; Middag, Rob ; Mieruch, Sebastian ; Milne, Angela ; Minami, Tomoharu ; Moffett, James W. ; Moncoiffe, Gwenaelle ; Moore, Willard S. ; Morris, Paul J. ; Morton, Peter L. ; Nakaguchi, Yuzuru ; Nakayama, Noriko ; Niedermiller, John ; Nishioka, Jun ; Nishiuchi, Akira ; Noble, Abigail E. ; Obata, Hajime ; Ober, Sven ; Ohnemus, Daniel C. ; van Ooijen, Jan ; O'Sullivan, Jeanette ; Owens, Stephanie A. ; Pahnke, Katharina ; Paul, Maxence ; Pavia, Frank ; Pena, Leopoldo D. ; Peters, Brian ; Planchon, Frederic ; Planquette, Helene ; Pradoux, Catherine ; Puigcorbé, Viena ; Quay, Paul D. ; Queroue, Fabien ; Radic, Amandine ; Rauschenberg, Sara ; Rehkämper, Mark ; Rember, Robert ; Remenyi, Tomas A. ; Resing, Joseph A. ; Rickli, Joerg ; Rigaud, Sylvain ; Rijkenberg, Micha J. A. ; Rintoul, Stephen R. ; Robinson, Laura F. ; Roca-Martí, Montserrat ; Rodellas, Valenti ; Roeske, Tobias ; Rolison, John M. ; Rosenberg, Mark ; Roshan, Saeed ; Rutgers van der Loeff, Michiel M. ; Ryabenko, Evgenia ; Saito, Mak A. ; Salt, Lesley ; Sanial, Virginie ; Sarthou, Geraldine ; Schallenberg, Christina ; Schauer, Ursula ; Scher, Howie ; Schlosser, Christian ; Schnetger, Bernhard ; Scott, Peter M. ; Sedwick, Peter N. ; Semiletov, Igor P. ; Shelley, Rachel U. ; Sherrell, Robert M. ; Shiller, Alan M. ; Sigman, Daniel M. ; Singh, Sunil Kumar ; Slagter, Hans ; Slater, Emma ; Smethie, William M. ; Snaith, Helen ; Sohrin, Yoshiki ; Sohst, Bettina M. ; Sonke, Jeroen E. ; Speich, Sabrina ; Steinfeldt, Reiner ; Stewart, Gillian ; Stichel, Torben ; Stirling, Claudine H. ; Stutsman, Johnny ; Swarr, Gretchen J. ; Swift, James H. ; Thomas, Alexander ; Thorne, Kay ; Till, Claire P. ; Till, Ralph ; Townsend, Ashley T. ; Townsend, Emily ; Tuerena, Robyn ; Twining, Benjamin S. ; Vance, Derek ; Velazquez, Sue ; Venchiarutti, Celia ; Villa-Alfageme, Maria ; Vivancos, Sebastian M. ; Voelker, Antje H. L. ; Wake, Bronwyn ; Warner, Mark J. ; Watson, Ros ; van Weerlee, Evaline ; Weigand, M. Alexandra ; Weinstein, Yishai ; Weiss, Dominik ; Wisotzki, Andreas ; Woodward, E. Malcolm S. ; Wu, Jingfeng ; Wu, Yingzhe ; Wuttig, Kathrin ; Wyatt, Neil ; Xiang, Yang ; Xie, Ruifang C. ; Xue, Zichen ; Yoshikawa, Hisayuki ; Zhang, Jing ; Zhang, Pu ; Zhao, Ye ; Zheng, Linjie ; Zheng, Xin-Yuan ; Zieringer, Moritz ; Zimmer, Louise A. ; Ziveri, Patrizia ; Zunino, Patricia ; Zurbrick, Cheryl
    The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.