Behn Mark D.

No Thumbnail Available
Last Name
Behn
First Name
Mark D.
ORCID
0000-0002-2001-1335

Search Results

Now showing 1 - 3 of 3
  • Article
    Aseismic transient slip on the Gofar transform fault, East Pacific Rise
    (National Academy of Sciences, 2020-04-28) Liu, Yajing ; McGuire, Jeffrey J. ; Behn, Mark D.
    Oceanic transform faults display a unique combination of seismic and aseismic slip behavior, including a large globally averaged seismic deficit, and the local occurrence of repeating magnitude (M) ∼6 earthquakes with abundant foreshocks and seismic swarms, as on the Gofar transform of the East Pacific Rise and the Blanco Ridge in the northeast Pacific Ocean. However, the underlying mechanisms that govern the partitioning between seismic and aseismic slip and their interaction remain unclear. Here we present a numerical modeling study of earthquake sequences and aseismic transient slip on oceanic transform faults. In the model, strong dilatancy strengthening, supported by seismic imaging that indicates enhanced fluid-filled porosity and possible hydrothermal circulation down to the brittle–ductile transition, effectively stabilizes along-strike seismic rupture propagation and results in rupture barriers where aseismic transients arise episodically. The modeled slow slip migrates along the barrier zones at speeds ∼10 to 600 m/h, spatiotemporally correlated with the observed migration of seismic swarms on the Gofar transform. Our model thus suggests the possible prevalence of episodic aseismic transients in M ∼6 rupture barrier zones that host active swarms on oceanic transform faults and provides candidates for future seafloor geodesy experiments to verify the relation between aseismic fault slip, earthquake swarms, and fault zone hydromechanical properties.
  • Article
    Thermal-mechanical behavior of oceanic transform faults : implications for the spatial distribution of seismicity
    (American Geophysical Union, 2010-07-01) Roland, Emily C. ; Behn, Mark D. ; Hirth, Greg
    To investigate the spatial distribution of earthquakes along oceanic transform faults, we utilize a 3-D finite element model to calculate the mantle flow field and temperature structure associated with a ridge-transform-ridge system. The model incorporates a viscoplastic rheology to simulate brittle failure in the lithosphere and a non-Newtonian temperature-dependent viscous flow law in the underlying mantle. We consider the effects of three key thermal and rheological feedbacks: (1) frictional weakening due to mantle alteration, (2) shear heating, and (3) hydrothermal circulation in the shallow lithosphere. Of these effects, the thermal structure is most strongly influenced by hydrothermal cooling. We quantify the thermally controlled seismogenic area for a range of fault parameters, including slip rate and fault length, and find that the area between the 350°C and 600°C isotherms (analogous to the zone of seismic slip) is nearly identical to that predicted from a half-space cooling model. However, in contrast to the half-space cooling model, we find that the depth to the 600°C isotherm and the width of the seismogenic zone are nearly constant along the fault, consistent with seismic observations. The calculated temperature structure and zone of permeable fluid flow are also used to approximate the stability field of hydrous phases in the upper mantle. We find that for slow slipping faults, the potential zone of hydrous alteration extends greater than 10 km in depth, suggesting that transform faults serve as a significant pathway for water to enter the oceanic upper mantle.
  • Article
    Thermal structure of oceanic transform faults
    (Geological Society of America, 2007-04) Behn, Mark D. ; Boettcher, Margaret S. ; Hirth, Greg
    We use three-dimensional finite element simulations to investigate the temperature structure beneath oceanic transform faults. We show that using a rheology that incorporates brittle weakening of the lithosphere generates a region of enhanced mantle upwelling and elevated temperatures along the transform; the warmest temperatures and thinnest lithosphere are predicted to be near the center of the transform. Previous studies predicted that the mantle beneath oceanic transform faults is anomalously cold relative to adjacent intraplate regions, with the thickest lithosphere located at the center of the transform. These earlier studies used simplified rheologic laws to simulate the behavior of the lithosphere and underlying asthenosphere. We show that the warmer thermal structure predicted by our calculations is directly attributed to the inclusion of a more realistic brittle rheology. This temperature structure is consistent with a wide range of observations from ridge-transform environments, including the depth of seismicity, geochemical anomalies along adjacent ridge segments, and the tendency for long transforms to break into small intratransform spreading centers during changes in plate motion.