Elsenbeck James R.

No Thumbnail Available
Last Name
Elsenbeck
First Name
James R.
ORCID

Search Results

Now showing 1 - 1 of 1
  • Article
    Prediction of silicate melt viscosity from electrical conductivity : a model and its geophysical implications
    (John Wiley & Sons, 2013-06-12) Pommier, Anne ; Evans, Rob L. ; Key, Kerry ; Tyburczy, James A. ; Mackwell, Stephen ; Elsenbeck, James R.
    Our knowledge of magma dynamics would be improved if geophysical data could be used to infer rheological constraints in melt-bearing zones. Geophysical images of the Earth's interior provide frozen snapshots of a dynamical system. However, knowledge of a rheological parameter such as viscosity would constrain the time-dependent dynamics of melt bearing zones. We propose a model that relates melt viscosity to electrical conductivity for naturally occurring melt compositions (including H2O) and temperature. Based on laboratory measurements of melt conductivity and viscosity, our model provides a rheological dimension to the interpretation of electromagnetic anomalies caused by melt and partially molten rocks (melt fraction ~ >0.7).