Shimeld John W.

No Thumbnail Available
Last Name
Shimeld
First Name
John W.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Preprint
    Distribution of crustal types in Canada Basin, Arctic Ocean
    ( 2016-06-27) Chian, Deping ; Jackson, H. Ruth ; Hutchinson, Deborah R. ; Shimeld, John W. ; Oakey, Gordon N. ; Lebedeva-Ivanova, Nina ; Li, Qingmou ; Saltus, Richard W. ; Mosher, David C.
    Seismic velocities determined from 70 sonobuoys widely distributed in Canada Basin were used to discriminate crustal types. Velocities of oceanic layer 3 (6.7 -7.1 km/s), transitional (7.2-7.6 km/s) and continental crust (5.5-6.6 km/s) were used to distinguish crustal types. Potential field data supports the distribution of oceanic crust as a polygon with maximum dimensions of ~340 km (east-west) by ~590 km (north-south) and identification of the ocean-continent boundary (OCB). Paired magnetic anomalies are associated only with crust that has oceanic velocities. Furthermore, the interpreted top of oceanic crust on seismic reflection profiles is more irregular and sometimes shallower than adjacent transitional crust. The northern segment of the narrow Canada Basin Gravity Low (CBGL), often interpreted as a spreading centre, bisects this zone of oceanic crust and coincides with the location of a prominent valley in seismic reflection profiles. Data coverage near the southern segment of CBGL is sparse. Velocities typical of transitional crust are determined east of it. Extension in this region, close to the inferred pole of rotation, may have been amagmatic. Offshore Alaska is a wide zone of thinned continental crust up to 300 km across. Published longer offset refraction experiments in the Basin confirm the depth to Moho and the lack of oceanic layer 3 velocities. Further north, towards Alpha Ridge and along Northwind Ridge, transitional crust is interpreted to be underplated or intruded by magmatism related to the emplacement of the High Arctic Large Igneous Province (HALIP). Although a rotational plate tectonic model is consistent with the extent of the conjugate magnetic anomalies that occupy only a portion of Canada Basin, it does not explain the asymmetrical configuration of the oceanic crust in the deep water portion of Canada Basin, and the unequal distribution of transitional and continental crust around the basin.
  • Article
    Seismic velocities within the sedimentary succession of the Canada Basin and southern Alpha-Mendeleev Ridge, Arctic Ocean : evidence for accelerated porosity reduction?
    (Oxford University Press, 2016-01) Shimeld, John W. ; Li, Qingmou ; Chian, Deping ; Lebedeva-Ivanova, Nina ; Jackson, Ruth ; Mosher, David C. ; Hutchinson, Deborah R.
    The Canada Basin and the southern Alpha-Mendeleev ridge complex underlie a significant proportion of the Arctic Ocean, but the geology of this undrilled and mostly ice-covered frontier is poorly known. New information is encoded in seismic wide-angle reflections and refractions recorded with expendable sonobuoys between 2007 and 2011. Velocity–depth samples within the sedimentary succession are extracted from published analyses for 142 of these records obtained at irregularly spaced stations across an area of 1.9E + 06 km2. The samples are modelled at regional, subregional and station-specific scales using an exponential function of inverse velocity versus depth with regionally representative parameters determined through numerical regression. With this approach, smooth, non-oscillatory velocity–depth profiles can be generated for any desired location in the study area, even where the measurement density is low. Practical application is demonstrated with a map of sedimentary thickness, derived from seismic reflection horizons interpreted in the time domain and depth converted using the velocity–depth profiles for each seismic trace. A thickness of 12–13 km is present beneath both the upper Mackenzie fan and the middle slope off of Alaska, but the sedimentary prism thins more gradually outboard of the latter region. Mapping of the observed-to-predicted velocities reveals coherent geospatial trends associated with five subregions: the Mackenzie fan; the continental slopes beyond the Mackenzie fan; the abyssal plain; the southwestern Canada Basin; and, the Alpha-Mendeleev magnetic domain. Comparison of the subregional velocity–depth models with published borehole data, and interpretation of the station-specific best-fitting model parameters, suggests that sandstone is not a predominant lithology in any of the five subregions. However, the bulk sand-to-shale ratio likely increases towards the Mackenzie fan, and the model for this subregion compares favourably with borehole data for Miocene turbidites in the eastern Gulf of Mexico. The station-specific results also indicate that Quaternary sediments coarsen towards the Beaufort-Mackenzie and Banks Island margins in a manner that is consistent with the variable history of Laurentide Ice Sheet advance documented for these margins. Lithological factors do not fully account for the elevated velocity–depth trends that are associated with the southwestern Canada Basin and the Alpha-Mendeleev magnetic domain. Accelerated porosity reduction due to elevated palaeo-heat flow is inferred for these regions, which may be related to the underlying crustal types or possibly volcanic intrusion of the sedimentary succession. Beyond exploring the variation of an important physical property in the Arctic Ocean basin, this study provides comparative reference for global studies of seismic velocity, burial history, sedimentary compaction, seismic inversion and overpressure prediction, particularly in mudrock-dominated successions.
  • Article
    Significance of northeast-trending features in Canada Basin, Arctic Ocean
    (John Wiley & Sons, 2017-11-28) Hutchinson, Deborah R. ; Jackson, H. Ruth ; Houseknecht, David ; Li, Qingmou ; Shimeld, John W. ; Mosher, David C. ; Chian, Deping ; Saltus, Richard W. ; Oakey, Gordon N.
    Synthesis of seismic velocity, potential field, and geological data from Canada Basin and its surrounding continental margins suggests that a northeast-trending structural fabric has influenced the origin, evolution, and current tectonics of the basin. This structural fabric has a crustal origin, based on the persistence of these trends in upward continuation of total magnetic intensity data and vertical derivative analysis of free-air gravity data. Three subparallel northeast-trending features are described. Northwind Escarpment, bounding the east side of the Chukchi Borderland, extends ∼600 km and separates continental crust of Northwind Ridge from high-velocity transitional crust in Canada Basin. A second, shorter northeast-trending zone extends ∼300 km in northern Canada Basin and separates inferred continental crust of Sever Spur from magmatically intruded crust of the High Arctic Large Igneous Province. A third northeast-trending feature, here called the Alaska-Prince Patrick magnetic lineament (APPL) is inferred from magnetic data and its larger regional geologic setting. Analysis of these three features suggests strike slip or transtensional deformation played a role in the opening of Canada Basin. These features can be explained by initial Jurassic-Early Cretaceous strike slip deformation (phase 1) followed in the Early Cretaceous (∼134 to ∼124 Ma) by rotation of Arctic Alaska with seafloor spreading orthogonal to the fossil spreading axis preserved in the central Canada Basin (phase 2). In this model, the Chukchi Borderland is part of Arctic Alaska.