Pickart Robert S.

No Thumbnail Available
Last Name
Pickart
First Name
Robert S.
ORCID
0000-0002-7826-911X

Search Results

Now showing 1 - 10 of 10
  • Article
    Variability and redistribution of heat in the Atlantic Water boundary current north of Svalbard
    (John Wiley & Sons, 2018-09-12) Renner, Angelika H. H. ; Sundfjord, Arild ; Janout, Markus A. ; Ingvaldsen, Randi B. ; Beszczynska-Möller, Agnieszka ; Pickart, Robert S. ; Pérez-Hernández, M. Dolores
    We quantify Atlantic Water heat loss north of Svalbard using year‐long hydrographic and current records from three moorings deployed across the Svalbard Branch of the Atlantic Water boundary current in 2012–2013. The boundary current loses annually on average 16 W m−2 during the eastward propagation along the upper continental slope. The largest vertical fluxes of >100 W m−2 occur episodically in autumn and early winter. Episodes of sea ice imported from the north in November 2012 and February 2013 coincided with large ocean‐to‐ice heat fluxes, which effectively melted the ice and sustained open water conditions in the middle of the Arctic winter. Between March and early July 2013, a persistent ice cover‐modulated air‐sea fluxes. Melting sea ice at the start of the winter initiates a cold, up to 100‐m‐deep halocline separating the ice cover from the warm Atlantic Water. Semidiurnal tides dominate the energy over the upper part of the slope. The vertical tidal structure depends on stratification and varies seasonally, with the potential to contribute to vertical fluxes with shear‐driven mixing. Further processes impacting the heat budget include lateral heat loss due to mesoscale eddies, and modest and negligible contributions of Ekman pumping and shelf break upwelling, respectively. The continental slope north of Svalbard is a key example regarding the role of ocean heat for the sea ice cover. Our study underlines the complexity of the ocean's heat budget that is sensitive to the balance between oceanic heat advection, vertical fluxes, air‐sea interaction, and the sea ice cover.
  • Article
    Coastal upwelling enhances abundance of a symbiotic diazotroph (UCYN-A) and its haptophyte host in the Arctic Ocean
    (Frontiers Media, 2022-09-05) Selden, Corday R. ; Einarsson, Sveinn V. ; Lowry, Kate E. ; Crider, Katherine E. ; Pickart, Robert S. ; Lin, Peigen ; Ashjian, Carin J. ; Chappell, P. Dreux
    The apparently obligate symbiosis between the diazotroph Candidatus Atelocyanobacterium thalassa (UCYN-A) and its haptophyte host,Braarudosphaera bigelowii , has recently been found to fix dinitrogen (N2) in polar waters at rates (per cell) comparable to those observed in the tropical/subtropical oligotrophic ocean basins. This study presents the novel observation that this symbiosis increased in abundance during a wind-driven upwelling event along the Alaskan Beaufort shelfbreak. As upwelling relaxed, the relative abundance of B. bigelowii among eukaryotic phytoplankton increased most significantly in waters over the upper slope. As the host’s nitrogen demands are believed to be supplied primarily by UCYN-A, this response suggests that upwelling may enhance N2 fixation as displaced coastal waters are advected offshore, potentially extending the duration of upwelling-induced phytoplankton blooms. Given that such events are projected to increase in intensity and number with ocean warming, upwelling-driven N2 fixation as a feedback on climate merits investigation.
  • Dataset
    Compiled temperature, salinity, density, and in-situ velocity sections along the north-east Chukchi Shelfbreak
    ( 2016-07-26) Corlett, W. Bryce ; Pickart, Robert S.
    This data was compiled from June-Aug. 2014, and covers all historical hydrography in the north-east Chukchi shelfbreak region with in-situ velocity measurements available at the time of compilation. All data is provided as collected, and the velocity data has been detided by the Oregon State University tidal inversion software (see Padman and Erofeeva, 2004). Nine of the total 46 sections required detiding (see ‘chukchi_data_sources.pdf’), and seven of these nine required additional quality control to remove ship velocities from the record. Overall, the record extends from May 2002 through July 2014. Seasonally, the data is limited to May through October, with data from May through June only available from 2002-4. In addition, there is an absence of data between 2004 and 2009, restricting interannual analyses to be comparisons between the early (2002-4) and late (2009-14) regimes.
  • Preprint
    The Chukchi slope current
    ( 2017-03-15) Corlett, W. Bryce ; Pickart, Robert S.
    Using a collection of 46 shipboard hydrographic/velocity transects occupied across the shelfbreak and slope of the Chukchi Sea between 2002 and 2014, we have quantified the existence of a current transporting Pacific-origin water westward over the upper continental slope. It has been named the Chukchi slope current, which is believed to emanate from Barrow Canyon. The current is surface-intensified, order 50 km wide, and advects both summer and winter waters. It is not trapped to a particular isobath, but instead is reminiscent of a free jet. There is no significant variation in Pacific water transport with distance from Barrow Canyon. A potential vorticity analysis suggests that the flow is baroclinically unstable, consistent with the notion that it meanders. The current is present during all synoptic wind conditions, but increases in strength from summer to fall presumably due to the seasonal enhancement of the easterly winds in the region. Its transport increased over the 12-year period of data coverage, also likely in response to wind forcing. In the mean, the slope current transports 0.50±0.070.50±0.07 Sv of Pacific water. This estimate allows us to construct a balanced mass budget of the Chukchi shelf inflows and outflows. Our study also confirms the existence of an eastward-flowing Chukchi shelfbreak jet transporting 0.10±0.030.10±0.03 Sv of Pacific water towards Barrow Canyon.
  • Article
    Water properties, heat and volume fluxes of Pacific water in Barrow Canyon during summer 2010
    (Elsevier, 2015-04-25) Itoh, Motoyo ; Pickart, Robert S. ; Kikuchi, Takashi ; Fukamachi, Yasushi ; Ohshima, Kay I. ; Simizu, Daisuke ; Arrigo, Kevin R. ; Vagle, Svein ; He, Jianfeng ; Ashjian, Carin J. ; Mathis, Jeremy T. ; Nishino, Shigeto ; Nobre, Carolina
    Over the past few decades, sea ice retreat during summer has been enhanced in the Pacific sector of the Arctic basin, likely due in part to increasing summertime heat flux of Pacific-origin water from the Bering Strait. Barrow Canyon, in the northeast Chukchi Sea, is a major conduit through which the Pacific-origin water enters the Arctic basin. This paper presents results from 6 repeat high-resolution shipboard hydrographic/velocity sections occupied across Barrow Canyon in summer 2010. The different Pacific water masses feeding the canyon – Alaskan coastal water (ACW), summer Bering Sea water (BSW), and Pacific winter water (PWW) – all displayed significant intra-seasonal variability. Net volume transports through the canyon were between 0.96 and 1.70 Sv poleward, consisting of 0.41–0.98 Sv of warm Pacific water (ACW and BSW) and 0.28–0.65 Sv of PWW. The poleward heat flux also varied strongly, ranging from 8.56 TW to 24.56 TW, mainly due to the change in temperature of the warm Pacific water. Using supplemental mooring data from the core of the warm water, along with wind data from the Pt. Barrow weather station, we derive and assess a proxy for estimating heat flux in the canyon for the summer time period, which is when most of the heat passes northward towards the basin. The average heat flux for 2010 was estimated to be 3.34 TW, which is as large as the previous record maximum in 2007. This amount of heat could melt 315,000 km2 of 1-meter thick ice, which likely contributed to significant summer sea ice retreat in the Pacific sector of the Arctic Ocean.
  • Article
    The Atlantic Water boundary current north of Svalbard in late summer
    (John Wiley & Sons, 2017-03-21) Perez-Hernandez, M. Dolores ; Pickart, Robert S. ; Pavlov, Vladimir ; Våge, Kjetil ; Ingvaldsen, Randi B. ; Sundfjord, Arild ; Renner, Angelika H. H. ; Torres, Daniel J. ; Erofeeva, Svetlana Y.
    Data from a shipboard hydrographic/velocity survey carried out in September 2013 of the region north of Svalbard in the Nansen Basin are analyzed to characterize the Atlantic Water (AW) boundary current as it flows eastward along the continental slope. Eight meridional transects across the current, spanning an alongstream distance of 180 km, allow for a detailed description of the current and the regional water masses. During the survey the winds were light and there was no pack-ice. The mean section reveals that the boundary current was O(40 km) wide, surface-intensified, with a maximum velocity of 20 cm/s. Its mean transport during the survey was 3.11 ± 0.33 Sv, of which 2.31 ± 0.29 Sv was AW. This suggests that the two branches of AW entering the Arctic Ocean via Fram Strait—the Yermak Plateau branch and the Svalbard branch—have largely combined into a single current by 30°E. At this location the boundary current meanders with a systematic change in its kinematic structure during offshore excursions. A potential vorticity analysis indicates that the flow is baroclinically unstable, consistent with previous observations of AW anticyclones offshore of the current as well as the presence of a near-field cyclone in this data set. Our survey indicates that only a small portion of the boundary current is diverted into the Kvitøya Trough (0.17 ± 0.08 Sv) and that the AW temperature/salinity signal is quickly eroded within the trough.
  • Article
    Structure, transport, and seasonality of the Atlantic Water boundary current north of Svalbard: Results from a yearlong mooring array
    (American Geophysical Union, 2019-02-15) Pérez-Hernández, M. Dolores ; Pickart, Robert S. ; Torres, Daniel J. ; Bahr, Frank B. ; Sundfjord, Arild ; Ingvaldsen, Randi B. ; Renner, Angelika H. H. ; Beszczynska-Möller, Agnieszka ; von Appen, Wilken‐Jon ; Pavlov, Vladimir
    The characteristics and seasonality of the Svalbard branch of the Atlantic Water (AW) boundary current in the Eurasian Basin are investigated using data from a six‐mooring array deployed near 30°E between September 2012 and September 2013. The instrument coverage extended to 1,200‐m depth and approximately 50 km offshore of the shelf break, which laterally bracketed the flow. Averaged over the year, the transport of the current over this depth range was 3.96 ± 0.32 Sv (1 Sv = 106 m3/s). The transport within the AW layer was 2.08 ± 0.24 Sv. The current was typically subsurface intensified, and its dominant variability was associated with pulsing rather than meandering. From late summer to early winter the AW was warmest and saltiest, and its eastward transport was strongest (2.44 ± 0.12 Sv), while from midspring to midsummer the AW was coldest and freshest and its transport was weakest (1.10 ± 0.06 Sv). Deep mixed layers developed through the winter, extending to 400‐ to 500‐m depth in early spring until the pack ice encroached the area from the north shutting off the air‐sea buoyancy forcing. This vertical mixing modified a significant portion of the AW layer, suggesting that, as the ice cover continues to decrease in the southern Eurasian Basin, the AW will be more extensively transformed via local ventilation.
  • Article
    Shelf-basin interactions and water mass residence times in the western Arctic Ocean: Insights provided by radium isotopes
    (American Geophysical Union, 2019-04-26) Kipp, Lauren ; Kadko, David C. ; Pickart, Robert S. ; Henderson, Paul B. ; Moore, Willard S. ; Charette, Matthew A.
    Radium isotopes are produced through the decay of thorium in sediments and are soluble in seawater; thus, they are useful for tracing ocean boundary‐derived inputs to the ocean. Here we apply radium isotopes to study continental inputs and water residence times in the Arctic Ocean, where land‐ocean interactions are currently changing in response to rising air and sea temperatures. We present the distributions of radium isotopes measured on the 2015 U.S. GEOTRACES transect in the Western Arctic Ocean and combine this data set with historical radium observations in the Chukchi Sea and Canada Basin. The highest activities of radium‐228 were observed in the Transpolar Drift and the Chukchi shelfbreak jet, signaling that these currents are heavily influenced by interactions with shelf sediments. The ventilation of the halocline with respect to inputs from the Chukchi shelf occurs on time scales of ≤19–23 years. Intermediate water ventilation time scales for the Makarov and Canada Basins were determined to be ~20 and >30 years, respectively, while deep water residence times in these basins were on the order of centuries. The radium distributions and residence times described in this study serve as a baseline for future studies investigating the impacts of climate change on the Arctic Ocean.
  • Article
    Storm-induced upwelling of high pCO2 waters onto the continental shelf of the western Arctic Ocean and implications for carbonate mineral saturation states
    (American Geophysical Union, 2012-04-11) Mathis, Jeremy T. ; Pickart, Robert S. ; Byrne, Robert H. ; McNeil, Craig L. ; Moore, G. W. K. ; Juranek, Laurie W. ; Liu, Xuewu ; Ma, Jian ; Easley, Regina A. ; Elliot, Matthew M. ; Cross, Jessica N. ; Reisdorph, Stacey C. ; Bahr, Frank B. ; Morison, James H. ; Lichendorf, Trina ; Feely, Richard A.
    The carbon system of the western Arctic Ocean is undergoing a rapid transition as sea ice extent and thickness decline. These processes are dynamically forcing the region, with unknown consequences for CO2 fluxes and carbonate mineral saturation states, particularly in the coastal regions where sensitive ecosystems are already under threat from multiple stressors. In October 2011, persistent wind-driven upwelling occurred in open water along the continental shelf of the Beaufort Sea in the western Arctic Ocean. During this time, cold (<−1.2°C), salty (>32.4) halocline water—supersaturated with respect to atmospheric CO2 (pCO2 > 550 μatm) and undersaturated in aragonite (Ωaragonite < 1.0) was transported onto the Beaufort shelf. A single 10-day event led to the outgassing of 0.18–0.54 Tg-C and caused aragonite undersaturations throughout the water column over the shelf. If we assume a conservative estimate of four such upwelling events each year, then the annual flux to the atmosphere would be 0.72–2.16 Tg-C, which is approximately the total annual sink of CO2 in the Beaufort Sea from primary production. Although a natural process, these upwelling events have likely been exacerbated in recent years by declining sea ice cover and changing atmospheric conditions in the region, and could have significant impacts on regional carbon budgets. As sea ice retreat continues and storms increase in frequency and intensity, further outgassing events and the expansion of waters that are undersaturated in carbonate minerals over the shelf are probable.
  • Article
    Formation and transport of corrosive water in the Pacific Arctic region
    (Elsevier, 2018-06-22) Cross, Jessica N. ; Mathis, Jeremy T. ; Pickart, Robert S. ; Bates, Nicholas R.
    Ocean acidification (OA), driven by rising anthropogenic carbon dioxide (CO2), is rapidly advancing in the Pacific Arctic Region (PAR), producing conditions newly corrosive to biologically important carbonate minerals like aragonite. Naturally short linkages across the PAR food web mean that species-specific acidification stress can be rapidly transmitted across multiple trophic levels, resulting in widespread impacts. Therefore, it is critical to understand the formation, transport, and persistence of acidified conditions in the PAR in order to better understand and project potential impacts to this delicately balanced ecosystem. Here, we synthesize data from process studies across the PAR to show the formation of corrosive conditions in colder, denser winter-modified Pacific waters over shallow shelves, resulting from the combination of seasonal terrestrial and marine organic matter respiration with anthropogenic CO2. When these waters are subsequently transported off the shelf, they acidify the Pacific halocline. We estimate that Barrow Canyon outflow delivers ~2.24 Tg C yr-1 to the Arctic Ocean through corrosive winter water transport. This synthesis also allows the combination of spatial data with temporal data to show the persistence of these conditions in halocline waters. For example, one study in this synthesis indicated that 0.5–1.7 Tg C yr-1 may be returned to the atmosphere via air-sea gas exchange of CO2 during upwelling events along the Beaufort Sea shelf that bring Pacific halocline waters to the ocean surface. The loss of CO2 during these events is more than sufficient to eliminate corrosive conditions in the upwelled Pacific halocline waters. However, corresponding moored and discrete data records indicate that potentially corrosive Pacific waters are present in the Beaufort shelfbreak jet during 80% of the year, indicating that the persistence of acidified waters in the Pacific halocline far outweighs any seasonal mitigation from upwelling. Across the datasets in this large-scale synthesis, we estimate that the persistent corrosivity of the Pacific halocline is a recent phenomenon that appeared between 1975 and 1985. Over that short time, these potentially corrosive waters originating over the continental shelves have been observed as far as the entrances to Amundsen Gulf and M’Clure Strait in the Canadian Arctic Archipelago. The formation and transport of corrosive waters on the Pacific Arctic shelves may have widespread impact on the Arctic biogeochemical system and food web reaching all the way to the North Atlantic.