Clemens Steven C.

No Thumbnail Available
Last Name
Clemens
First Name
Steven C.
ORCID
0000-0002-1136-7815

Search Results

Now showing 1 - 2 of 2
  • Article
    What can we learn from X-ray fluorescence core scanning data? A paleomonsoon case study
    (American Geophysical Union, 2020-01-12) Gebregiorgis, Daniel ; Giosan, Liviu ; Hathorne, Ed C. ; Anand, Pallavi ; Nilsson-Kerr, Katrina ; Plass, Anna ; Luckge, Andreas ; Clemens, Steven C. ; Frank, Martin
    X‐ray fluorescence (XRF) core scanning of marine and lake sediments has been extensively used to study changes in past environmental and climatic processes over a range of timescales. The interpretation of XRF‐derived element ratios in paleoclimatic and paleoceanographic studies primarily considers differences in the relative abundances of particular elements. Here we present new XRF core scanning data from two long sediment cores in the Andaman Sea in the northern Indian Ocean and show that sea level related processes influence terrigenous inputs based proxies such as Ti/Ca, Fe/Ca, and elemental concentrations of the transition metals (e.g., Mn). Zr/Rb ratios are mainly a function of changes in median grain size of lithogenic particles and often covary with changes in Ca concentrations that reflect changes in biogenic calcium carbonate production. This suggests that a common process (i.e., sea level) influences both records. The interpretation of lighter element data (e.g., Si and Al) based on low XRF counts is complicated as variations in mean grain size and water content result in systematic artifacts and signal intensities not related to the Al or Si content of the sediments. This highlights the need for calibration of XRF core scanning data based on discrete sample analyses and careful examination of sediment properties such as porosity/water content for reliably disentangling environmental signals from other physical properties. In the case of the Andaman Sea, reliable extraction of a monsoon signal requires accounting for the sea level influence on the XRF data.
  • Article
    Southern Hemisphere forcing of South Asian monsoon precipitation over the past ~1 million years
    (Nature Publishing Group, 2018-11-08) Gebregiorgis, Daniel ; Hathorne, Ed C. ; Giosan, Liviu ; Clemens, Steven C. ; Nürnberg, Dirk ; Frank, Martin
    The orbital-scale timing of South Asian monsoon (SAM) precipitation is poorly understood. Here we present new SST and seawater δ18O (δ18Osw) records from the Bay of Bengal, the core convective region of the South Asian monsoon, over the past 1 million years. Our records reveal that SAM precipitation peaked in the precession band ~9 kyrs after Northern Hemisphere summer insolation maxima, in phase with records of SAM winds in the Arabian Sea and eastern Indian Ocean. Precession-band variance, however, accounts for ~30% of the total variance of SAM precipitation while it was either absent or dominant in records of the East Asian monsoon (EAM). This and the observation that SAM precipitation was phase locked with obliquity minima and was sensitive to Southern Hemisphere warming provides clear evidence that SAM and EAM precipitation responded differently to orbital forcing and highlights the importance of internal processes forcing monsoon variability.