McArthur Andrew G.

No Thumbnail Available
Last Name
McArthur
First Name
Andrew G.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Preprint
    Molecular evolution of the vesicle coat component βCOP in Toxoplasma gondii
    ( 2007-01) Smith, Sherri S. ; Pfluger, Stacy L. ; Hjort, Elizabeth ; McArthur, Andrew G. ; Hager, Kristin M.
    Coatomer coated (COPI) vesicles play a pivotal role for multiple membrane trafficking steps throughout the eukaryotic cell. Our focus is on βCOP, one of the most well known components of the COPI multi-protein complex. Amino acid differences in βCOP may dictate functional divergence across species during the course of evolution, especially with regards to the evolutionary pressures on obligate intracellular parasites. A bioinformatic analysis of βCOP amino acid sequences was conducted for 49 eukaryotic species. Cloning and sequence analysis of the Toxoplasma gondii βCOP homologue revealed several amino acid insertions unique to T. gondii and one C-terminal insertion that is unique to apicomplexan parasites. These findings led us to investigate the possibility that βCOP experienced functional divergence during the course of its evolution. Bayesian phylogenetic analysis revealed a tree consistent with pan eukaryote distribution and long-branch lengths were observed among the apicomplexans. Further analysis revealed that kinetoplast βCOP underwent the most amount of change, leading to perhaps an overall change of function. In comparison, T. gondii exhibited subtle yet specific amino acid changes. The amino acid substitutions did not occur in the same places as other lineages, suggesting that TgβCOP has a role specific to the apicomplexans. Our work identifies forty-eight residues that are likely to be functionally important when comparing apicomplexan, kinetoplastid, and fungal βCOP.
  • Preprint
    Protein phosphatase 2A plays a crucial role in Giardia lamblia differentiation
    ( 2006-12-06) Lauwaet, Tineke ; Davids, Barbara J. ; Torres-Escobar, Ascencion ; Birkeland, Shanda R. ; Cipriano, Michael J. ; Preheim, Sarah P. ; Palm, Daniel ; Svard, Staffan G. ; McArthur, Andrew G. ; Gillin, Frances D.
    The ability of Giardia lamblia to undergo two distinct differentiations in response to physiologic stimuli is central to its pathogenesis. The giardial cytoskeleton changes drastically during encystation and excystation. However, the signal transduction pathways mediating these transformations are poorly understood. We tested the hypothesis that PP2A, a highly conserved serine/threonine protein phosphatase, might be important in giardial differentiation. We found that in vegetatively growing trophozoites, gPP2A-C protein localizes to basal bodies/centrosomes, and to cytoskeletal structures unique to Giardia: the ventral disk, and the dense rods of the anterior, posterior-lateral, and caudal flagella. During encystation, gPP2A-C protein disappears from only the anterior flagellar dense rods. During excystation, gPP2A-C localizes to the cyst wall in excysting cysts but is not found in the wall of cysts with emerging excyzoites. Transcriptome and immunoblot analyses indicated that gPP2A-C mRNA and protein are upregulated in mature cysts and during the early stage of excystation that models passage through the host stomach. Stable expression of gPP2A-C antisense RNA did not affect vegetative growth, but strongly inhibited the formation of encystation secretory vesicles (ESV) and water-resistant cysts. Moreover, the few cysts that formed were highly defective in excystation. Thus, gPP2A-C localizes to universal cytoskeletal structures and to structures unique to Giardia. It is also important for encystation and excystation, crucial giardial transformations that entail entry into and exit from dormancy.