Andres Magdalena

No Thumbnail Available
Last Name
Andres
First Name
Magdalena
ORCID
0000-0002-5512-2844

Search Results

Now showing 1 - 15 of 15
  • Article
    Shelfbreak jet structure and variability off New Jersey using ship of opportunity data from the CMV Oleander
    (American Geophysical Union, 2020-08-30) Forsyth, Jacob S. T. ; Andres, Magdalena ; Gawarkiewicz, Glen G.
    Repeat measurements of velocity and temperature profiles from the Container Motor Vessel (CMV) Oleander provide an unprecedented look into the variability on the New Jersey Shelf and upper continental slope. Here 1362 acoustic Doppler current profiler (ADCP) velocity sections collected between 1994 and 2018 are analyzed in both Eulerian and stream coordinate reference frames to characterize the mean structure of the Shelfbreak Jet, as well as its seasonal to decadal variability. The Eulerian mean Shelfbreak Jet has a maximum jet velocity of 0.12 m s−1. The maximum jet velocity peaks in April and May and reaches its minimum in July and August. In a stream coordinate framework, the jet is only identified in 61% of transects, and the mean stream coordinate Shelfbreak Jet has a maximum jet velocity of 0.32 m s−1. Evidence is found that Warm Core Rings, originating from the Gulf Stream arriving in the Slope Sea adjacent to the New Jersey Shelf, shift the Shelfbreak Jet onshore of its mean position or entirely shutdown the Shelfbreak Jet's flow. At interannual timescales, variability in the Shelfbreak Jet velocity is correlated with the temperature on the New Jersey Shelf 2 months later. When considered in a stream coordinate framework, Shelfbreak Jet have decreased over the time period considered in the study.
  • Article
    Overview of the Processes driving Exchange At Cape Hatteras Program
    (Oceanography Society, 2022-05-12) Seim, Harvey E. ; Savidge, Dana ; Andres, Magdalena ; Bane, John M. ; Edwards, Catherine ; Gawarkiewicz, Glen G. ; He, Ruoying ; Todd, Robert E. ; Muglia, Michael ; Zambon, Joseph B. ; Han, Lu ; Mao, Shun
    The Processes driving Exchange At Cape Hatteras (PEACH) program seeks to better understand seawater exchanges between the continental shelf and the open ocean near Cape Hatteras, North Carolina. This location is where the Gulf Stream transitions from a boundary-trapped current to a free jet, and where robust along-shelf convergence brings cool, relatively fresh Middle Atlantic Bight and warm, salty South Atlantic Bight shelf waters together, forming an important and dynamic biogeographic boundary. The magnitude of this convergence implies large export of shelf water to the open ocean here. Background on the oceanography of the region provides motivation for the study and gives context for the measurements that were made. Science questions focus on the roles that wind forcing, Gulf Stream forcing, and lateral density gradients play in driving exchange. PEACH observational efforts include a variety of fixed and mobile observing platforms, and PEACH modeling included two different resolutions and data assimilation schemes. Findings to date on mean circulation, the nature of export from the southern Middle Atlantic Bight shelf, Gulf Stream variability, and position variability of the Hatteras Front are summarized, together with a look ahead to forthcoming analyses.
  • Article
    Using acoustic travel time to monitor the heat variability of glacial Fjords
    (American Meteorological Society, 2021-09-01) Sanchez, Robert ; Straneo, Fiamma ; Andres, Magdalena
    Monitoring the heat content variability of glacial fjords is crucial to understanding the effects of oceanic forcing on marine-terminating glaciers. A pressure-sensor-equipped inverted echo sounder (PIES) was deployed midfjord in Sermilik Fjord in southeast Greenland from August 2011 to September 2012 alongside a moored array of instruments recording temperature, conductivity, and velocity. Historical hydrography is used to quantify the relationship between acoustic travel time and the vertically averaged heat content, and a new method is developed for filtering acoustic return echoes in an ice-influenced environment. We show that PIES measurements, combined with a knowledge of the fjord’s two-layer density structure, can be used to reconstruct the thickness and temperature of the inflowing water. Additionally, we find that fjord–shelf exchange events are identifiable in the travel time record implying the PIES can be used to monitor fjord circulation. Finally, we show that PIES data can be combined with moored temperature records to derive the heat content of the upper layer of the fjord where moored instruments are at great risk of being damaged by transiting icebergs.
  • Article
    On the predictability of sea surface height around Palau
    (American Meteorological Society, 2020-11-01) Andres, Magdalena ; Musgrave, Ruth C. ; Rudnick, Daniel L. ; Zeiden, Kristin L. ; Peacock, Thomas ; Park, Jae-Hun
    As part of the Flow Encountering Abrupt Topography (FLEAT) program, an array of pressure-sensor equipped inverted echo sounders (PIESs) was deployed north of Palau where the westward-flowing North Equatorial Current encounters the southern end of the Kyushu–Palau Ridge in the tropical North Pacific. Capitalizing on concurrent observations from satellite altimetry, FLEAT Spray gliders, and shipboard hydrography, the PIESs’ 10-month duration hourly bottom pressure p and round-trip acoustic travel time τ records are used to examine the magnitude and predictability of sea level and pycnocline depth changes and to track signal propagations through the array. Sea level and pycnocline depth are found to vary in response to a range of ocean processes, with their magnitude and predictability strongly process dependent. Signals characterized here comprise the barotropic tides, semidiurnal and diurnal internal tides, southeastward-propagating superinertial waves, westward-propagating mesoscale eddies, and a strong signature of sea level increase and pycnocline deepening associated with the region’s relaxation from El Niño to La Niña conditions. The presence of a broad band of superinertial waves just above the inertial frequency was unexpected and the FLEAT observations and output from a numerical model suggest that these waves detected near Palau are forced by remote winds east of the Philippines. The PIES-based estimates of pycnocline displacement are found to have large uncertainties relative to overall variability in pycnocline depth, as localized deep current variations arising from interactions of the large-scale currents with the abrupt topography around Palau have significant travel time variability.
  • Article
    Spatial variability of movement, structure, and formation of Warm Core Rings in the Northwest Atlantic Slope Sea
    (American Geophysical Union, 2022-08-16) Silver, Adrienne M. ; Gangopadhyay, Avijit ; Gawarkiewicz, Glen G. ; Andres, Magdalena ; Flierl, Glenn R. ; Clark, Jenifer
    Gulf Stream Warm Core Rings (WCRs) have important influences on the New England Shelf and marine ecosystems. A 10-year (2011–2020) WCR dataset that tracks weekly WCR locations and surface areas is used here to identify the rings' path and characterize their movement between 55 and 75°W. The WCR dataset reveals a very narrow band between 66 and 71°W along which rings travel almost due west along ∼39°N across isobaths – the “Ring Corridor.” Then, west of the corridor, the mean path turns southwestward, paralleling the shelfbreak. The average ring translation speed along the mean path is 5.9 cm s−1. Long-lived rings (lifespan >150 days) tend to occupy the region west of the New England Seamount Chain (NESC) whereas short-lived rings (lifespan <150 days) tend to be more broadly distributed. WCR vertical structures, analyzed using available Argo float profiles indicate that rings that are formed to the west of the NESC have shallower thermoclines than those formed to the east. This tendency may be due to different WCR formation processes that are observed to occur along different sections of the Gulf Stream. WCRs formed to the east of the NESC tend to form from a pinch-off mechanism incorporating cores of Sargasso Sea water and a perimeter of Gulf Stream water. WCRs that form to the west of the NESC, form from a process called an aneurysm. WCRs formed through aneurysms comprise water mostly from the northern half of the Gulf Stream and are smaller than the classic pinch-off rings.
  • Article
    The impact of Warm Core Rings on Middle Atlantic Bight shelf temperature and shelf break velocity
    (American Geophysical Union, 2022-02-28) Forsyth, Jacob S. T. ; Gawarkiewicz, Glen G. ; Andres, Magdalena
    Warm Core Rings (WCRs) are known to disrupt the shelf flow as well as drive strong heat transport onto the Middle Atlantic Bight shelf. We examine 27 rings sampled by the container ship Oleander, 16 rings which have in-situ velocity data and 11 rings identified from satellite sea surface height but with in-situ temperature data, to study the variability in rings' impact on shelf break velocities and on the temperature of the adjacent shelf. WCRs that have higher rotational velocities and are closer to the shelf are found to exert greater influence on the along-shelf velocities, with the fastest and closest rings reversing the direction of flow at the shelf break. As rings approach the study site, the Shelfbreak Jet is faster than when the rings are about to exit the study site, likely due to first steepening then flattening of the isopycnals at the Shelfbreak Front. Rings also have lasting impacts on the shelf temperature: rings with faster rotational velocities cool the shelf and rings with slower rotational velocities warm the shelf. The evolution of temperature on the shelf as a ring passes is strongly tied to the season. During warmer seasons, when temperature stratification on the shelf is strong, a ring cools the shelf; during periods of weak thermal stratification, rings tend to warm the shelf. Rings which cool the shelf are additionally associated with increased upwelling as they pass the study site.
  • Article
    A road map to IndOOS-2 better observations of the rapidly warming Indian Ocean
    (American Meteorological Society, 2020-11-01) Beal, Lisa M. ; Vialard, Jérôme ; Roxy, Mathew Koll ; Li, Jing ; Andres, Magdalena ; Annamalai, Hariharasubramanian ; Feng, Ming ; Han, Weiqing ; Hood, Raleigh R. ; Lee, Tong ; Lengaigne, Matthieu ; Lumpkin, Rick ; Masumoto, Yukio ; McPhaden, Michael J. ; Ravichandran, M. ; Shinoda, Toshiaki ; Sloyan, Bernadette M. ; Strutton, Peter G. ; Subramanian, Aneesh C. ; Tozuka, Tomoki ; Ummenhofer, Caroline C. ; Unnikrishnan, Shankaran Alakkat ; Wiggert, Jerry D. ; Yu, Lisan ; Cheng, Lijing ; Desbruyères, Damien G. ; Parvathi, V.
    The Indian Ocean Observing System (IndOOS), established in 2006, is a multinational network of sustained oceanic measurements that underpin understanding and forecasting of weather and climate for the Indian Ocean region and beyond. Almost one-third of humanity lives around the Indian Ocean, many in countries dependent on fisheries and rain-fed agriculture that are vulnerable to climate variability and extremes. The Indian Ocean alone has absorbed a quarter of the global oceanic heat uptake over the last two decades and the fate of this heat and its impact on future change is unknown. Climate models project accelerating sea level rise, more frequent extremes in monsoon rainfall, and decreasing oceanic productivity. In view of these new scientific challenges, a 3-yr international review of the IndOOS by more than 60 scientific experts now highlights the need for an enhanced observing network that can better meet societal challenges, and provide more reliable forecasts. Here we present core findings from this review, including the need for 1) chemical, biological, and ecosystem measurements alongside physical parameters; 2) expansion into the western tropics to improve understanding of the monsoon circulation; 3) better-resolved upper ocean processes to improve understanding of air–sea coupling and yield better subseasonal to seasonal predictions; and 4) expansion into key coastal regions and the deep ocean to better constrain the basinwide energy budget. These goals will require new agreements and partnerships with and among Indian Ocean rim countries, creating opportunities for them to enhance their monitoring and forecasting capacity as part of IndOOS-2.
  • Article
    Spatial and temporal variability of the Gulf Stream near Cape Hatteras
    (American Geophysical Union, 2021-08-17) Andres, Magdalena
    In situ observations from a 19-month deployment of current- and pressure-sensor equipped inverted echo sounders (CPIESs) along and across the Gulf Stream near Cape Hatteras capture spatial and temporal variability where this western boundary current separates from the continental margin. Regional hydrographic casts and two temperature cross-sections spanning the Gulf Stream southeast of Cape Hatteras are used with the CPIESs' records of acoustic travel time to infer changes in thermocline depth DT and Gulf Stream position. Wave-like Gulf Stream meanders are observed where the Stream approaches the separation location with periods less than 15 days, wavelengths less than 500-km, and phase speeds between 40 and 70 km d−1. Though meander amplitudes typically decrease by ∼30% on the final approach to Cape Hatteras, some signals are still coherent across the Gulf Stream separation location. Temporal variability in meander intensity may be related to the Loop Current ∼1,400 km upstream. Mesoscale variability is strongest downstream of the separation location where Gulf Stream position is no longer constrained by the steep continental slope. Low frequency transport changes in the Florida Straits are correlated with sea-surface height gradients along the entire South Atlantic Bight (SAB) and with DT inferred at the CPIES sites. The correlations with DT are likely due to coherent transport anomalies in the Gulf Stream approaching the separation location, which then drive Gulf Stream position changes downstream of the separation location. The patterns of coherent transport anomalies may reflect large-scale atmospheric forcing patterns or rapid equatorward propagation of barotropic signals along the SAB.
  • Article
    Understanding physical drivers of the 2015/16 marine heatwaves in the Northwest Atlantic
    (Nature Research, 2021-09-02) Perez, Elena ; Ryan, Svenja ; Andres, Magdalena ; Gawarkiewicz, Glen G. ; Ummenhofer, Caroline C.
    The Northwest Atlantic, which has exhibited evidence of accelerated warming compared to the global ocean, also experienced several notable marine heatwaves (MHWs) over the last decade. We analyze spatiotemporal patterns of surface and subsurface temperature structure across the Northwest Atlantic continental shelf and slope to assess the influences of atmospheric and oceanic processes on ocean temperatures. Here we focus on MHWs from 2015/16 and examine their physical drivers using observational and reanalysis products. We find that a combination of jet stream latitudinal position and ocean advection, mainly due to warm core rings shed by the Gulf Stream, plays a role in MHW development. While both atmospheric and oceanic drivers can lead to MHWs they have different temperature signatures with each affecting the vertical structure differently and horizontal spatial patterns of a MHW. Northwest Atlantic MHWs have significant socio-economic impacts and affect commercially important species such as squid and lobster.
  • Article
    Submesoscale eddy and frontal instabilities in the Kuroshio interacting with a cape south of Taiwan
    (American Geophysical Union, 2020-04-23) Cheng, Yu‐Hsin ; Chang, Ming-Huei ; Ko, Dong S. ; Jan, Sen ; Andres, Magdalena ; Kirincich, Anthony R. ; Yang, Yiing-Jang ; Tai, Jen‐Hua
    The processes underlying the strong Kuroshio encountering a cape at the southernmost tip of Taiwan are examined with satellite‐derived chlorophyll and temperature maps, a drifter trajectory, and realistic model simulations. The interaction spurs the formation of submesoscale cyclonic eddies that trap cold and high‐chlorophyll water and the formation of frontal waves between the free stream and the wake flow. An observed train of eddies, which have relative vorticity about one to four times the planetary vorticity (f), is shed from the recirculation that occurs in the immediate lee of the cape as a result of flow separation. These propagate downstream at a speed of 0.5–0.6 m s−1. Farther downstream, the corotation and merging of two or three adjacent eddies are common owing to the topography‐induced slowdown of eddy propagation farther downstream. It is found that the relative vorticity of a corotating system (1.2f) is 70% weaker than that of a single eddy due to the increase of eddy diameter from ~16 to ~33 km, in agreement with Kelvin's circulation theorem. The shedding period of the submesoscale eddies is strongly modulated by either diurnal or semidiurnal tidal flows, which typically reach 0.2–0.5 m s−1, whereas its intrinsic shedding period is insignificant. The frontal waves predominate in the horizontal free shear layer emitted from the cape, as well as a density front. Energetics analysis suggests that the wavy features result primarily from the growth of barotropic instability in the free shear layer, which may play a secondary process in the headland wake.
  • Article
    Ocean circulation near Cape Hatteras: observations of mean and variability
    (American Geophysical Union, 2022-11-19) Han, Lu ; Seim, Harvey ; Bane, John ; Savidge, Dana ; Andres, Magdalena ; Gawarkiewicz, Glen ; Muglia, Mike
    The convergence of different water masses on the shelf and along the shelfbreak, and cross‐isobath shelf‐open ocean exchanges contribute to the complex circulation near Cape Hatteras. We examine the mean and variability of these circulations using data from nine bottom‐mounted acoustic Doppler current profilers, deployed over the mid‐ to outer‐continental shelf north and south of Cape Hatteras as part of the Processes driving Exchange At Cape Hatteras program. The 18‐month‐mean depth‐averaged shelf flows are mostly aligned with isobaths and oriented toward Cape Hatteras. At two sites just north of Cape Hatteras, mean flows have a strong cross‐shelf component. Two dominant spatial patterns in the velocity field are obtained from an empirical orthogonal function analysis. The two leading modes contain 61% of the total variance. The spatial variation of Mode 1 exhibits an along‐shelf flow pattern, while that of Mode 2 shows a convergent flow pattern. The principal component (PC) series of Mode 1 is significantly correlated with the local wind stress, confirming that the along‐shelf flow is wind‐driven as expected. The PC of Mode 2 is highly correlated with the Gulf Stream lateral position as inferred from the current‐ and pressure‐sensor‐equipped inverted echo sounders over the slope south of Cape Hatteras, which indicates that Gulf Stream movement drives time‐varying shelf flow convergence. Conditionally averaged sea‐surface temperature and high‐frequency radar‐measured surface currents based on PC1 and PC2 confirm these relationships and further illustrate how the wind and Gulf Stream forcing work together to influence the flow regime in this region.
  • Article
    A monthly index for the large‐scale sea surface temperature gradient across the separated Gulf Stream
    (American Geophysical Union, 2022-12-14) Parfitt, Rhys ; Kwon, Young-Oh ; Andres, Magdalena
    The strong sea‐surface temperature (SST) gradient associated with the Gulf Stream (GS) is widely acknowledged to play an important role in shaping mid‐latitude weather and climate. Despite this, an index for the GS SST gradient has not yet been standardized in the literature. This paper introduces a monthly index for the large‐scale SST gradient across the separated GS based on the time‐varying GS position detected from sea‐surface height. Analysis suggests that the variations in the monthly average SST gradient throughout the year result primarily from SST variability to the north of the GS, with little contribution from SST to the south. The index exhibits a weak periodicity at ∼2 years. Sea level pressure and turbulent heat flux patterns suggest that variability in the large‐scale SST gradient is related to atmospheric (rather than oceanic) forcing. Ocean‐to‐atmosphere feedback does not persist throughout the year, but there is some evidence of wintertime feedback.
  • Article
    Observations of Shelf-Ocean Exchange in the Northern South Atlantic Bight Driven by the Gulf Stream
    (American Geophysical Union, 2023-07-07) Andres, Magdalena ; Muglia, Michael ; Seim, Harvey E. ; Bane, John M. ; Savidge, Dana
    Between Florida and Cape Hatteras, North Carolina, the Gulf Stream carries warm, salty waters poleward along the continental slope. This strong current abuts the edge of the South Atlantic Bight (SAB) continental shelf and is thought to influence exchange of waters between the open ocean and the shelf. Observations from a pair of instruments deployed for 19 months in the northern SAB are used here to examine the processes by which the Gulf Stream can impact this exchange. The instrument deployed on the SAB shelf edge shows that the time-averaged along-slope flow is surface-intensified with only few flow reversals at low frequencies (>40-day period). Time-averaged cross-slope flow is onto the SAB shelf in a lower layer and off-shelf above. Consistent with Ekman dynamics, the magnitude of lower-layer on-shelf flow is correlated with the along-slope velocity, which is in turn controlled by the position and/or transport of the Gulf Stream that flows poleward along the SAB continental slope. In the frequency band associated with downstream-propagating wave-like meanders of the Gulf Stream jet (2-15 day period), currents at the shelf-edge are characterized by surface-intensified flow in the along- and cross-slope directions. Estimates of maximum upwelling velocities associated with cyclonic frontal eddies between meander crests occasionally reach 100 m/day.
  • Article
    Modes of North Atlantic Western boundary current variability at 36° N
    (Nature Research, 2023-10-31) Mao, Shun ; He, Ruoying ; Andres, Magdalena
    The surface-intensified, poleward-flowing Gulf Stream (GS) encounters the equatorward-flowing Deep Western Boundary Current (DWBC) at 36° N off Cape Hatteras. In this study, daily output from a data-assimilative, high-resolution (800 m), regional ocean reanalysis was examined to quantify variability in the velocity structure of the GS and DWBC during 2017–2018. The validity of this reanalysis was confirmed with independent observations of ocean velocity and density that demonstrate a high level of realism in the model’s representation of the regional circulation. The model’s daily velocity time series across a transect off Cape Hatteras was examined using rotated Empirical Orthogonal Function analysis, and analysis suggests three leading modes that characterize the variability of the western boundary currents throughout the water column. The first mode, related to meandering of the GS current, accounts for 55.3% of the variance, followed by a “wind-forced mode”, which accounts for 12.5% of the variance. The third mode, influenced by the DWBC and upper-ocean eddies, accounts for 7.1% of the variance.
  • Article
    A framework for multidisciplinary science observations from commercial ships
    (Oxford University Press, 2024-02-19) Macdonald, Alison M. ; Hiron, Luna ; McRaven, Leah T. ; Stolp, Laura ; Strom, Kerry ; Hudak, Rebecca ; Smith, Shawn R. ; Hummon, Julia M. ; Andres, Magdalena
    Science Research on Commercial Ships (Science RoCS) is a grassroots multi-institution group of scientists, engineers, data managers, and administrators seeking to further research opportunities by equipping commercial vessels with suites of maritime appropriate scientific sensors operated autonomously on regular ship routes with minimal crew intervention. Science RoCS aims to foster cooperation between the shipping industry and scientific community at a level that will be transformative for societally relevant ocean science, promote cross-disciplinary ocean science through simultaneous observation of the air/sea interface and water column, and spur a technological revolution in observational oceanography by developing new turnkey, maritime-industry-appropriate scientific equipment whose data streams can be used to stimulate innovations in oceanic (physical, chemical, and biological) understanding and forecasting. We envision a future where scientific data collection on commercial ships is the new industry standard, providing repeat measurements in undersampled, remote regions, on scales not otherwise accessible to the scientific community.