Kukulka Tobias

No Thumbnail Available
Last Name
Kukulka
First Name
Tobias
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    The influence of crosswind tidal currents on Langmuir circulation in a shallow ocean
    (American Geophysical Union, 2011-08-04) Kukulka, Tobias ; Plueddemann, Albert J. ; Trowbridge, John H. ; Sullivan, Peter P.
    Langmuir circulation (LC) is a turbulent process driven by wind and surface waves that plays a key role in transferring momentum, heat, and mass in the oceanic surface layer. On the coastal shelves the largest-scale LC span the whole water column and thus couple the surface and bottom boundary layers and enhance turbulent mixing. Observations and large eddy simulations (LES) of a shallow coastal ocean demonstrate that these relatively large scale Langmuir cells are strongly influenced by crosswind tidal currents. Two mechanisms by which crosswind tidal shear may distort and disrupt Langmuir cells are proposed. The first mechanism involves cell shearing due to differential advection across the whole cell. For the second mechanism, middepth vertical LC currents advect sheared mean crosswind current, leading to the attraction of upwelling and downwelling regions, so that LC cells are unsustainable when both regions overlap. Scaling arguments indicate that LC cells are more susceptible to crosswind shear distortion for smaller LC surface velocity convergence and greater cell aspect ratio (vertical to horizontal LC scale), which is consistent with the results obtained from the observations and LES. These results imply that scaling of LC characteristics in a coastal ocean differs from that in the open ocean, which has important practical implications for parameterizing enhanced mixing due to LC.
  • Article
    Nonlocal transport due to Langmuir circulation in a coastal ocean
    (American Geophysical Union, 2012-12-11) Kukulka, Tobias ; Plueddemann, Albert J. ; Sullivan, Peter P.
    We present observations and simulations of large-scale velocity structures associated with turbulent boundary layer dynamics of a coastal ocean. Special purpose acoustic Doppler current profiler measurements revealed that such structures were frequently present, in spite of complex coastal environmental conditions. Large eddy simulation results are only consistent with these observations if the Langmuir circulation (LC) effect due to wave-current interaction is included in the model. Thus, model results indicate that the observed large-scale velocity structures are due to LC. Based on these simulations, we examine the shift of energetics and transport from a local regime for purely shear-driven turbulence to a nonlocal regime for turbulence with LC due to coherent large-scale motions that span the whole water column. Without LC, turbulent kinetic energy (TKE) dissipation rates approximately balance TKE shear production, consistent with solid wall boundary layer turbulence. This stands in contrast to the LC case for which the vertical TKE transport plays a dominant role in the TKE balance. Conditional averages argue that large-scale LC coherent velocity structures extract only a small fraction of energy from the wavefield but receive most of their energy input from the Eulerian shear. The analysis of scalar fields and Lagrangian particles demonstrates that the vertical transport is significantly enhanced with LC but that small-scale mixing may be reduced. In the presence of LC, vertical scalar fluxes may be up gradient, violating a common assumption in oceanic boundary layer turbulence parameterizations.
  • Article
    Inhibited upper ocean restratification in nonequilibrium swell conditions
    (John Wiley & Sons, 2013-07-30) Kukulka, Tobias ; Plueddemann, Albert J. ; Sullivan, Peter P.
    Diurnal restratification of the ocean surface boundary layer (OSBL) represents a competition between mixing of the OSBL and solar heating. Langmuir turbulence (LT) is a mixing process in the OSBL, driven by wind and surface waves, that transfers momentum, heat, and mass. Observations in nonequilibrium swell conditions reveal that the OSBL does not restratify despite low winds and strong solar radiation. Motivated by observations, we use large-eddy simulations of the wave-averaged Navier-Stokes equations to show that LT is capable of inhibiting diurnal restratification of the OSBL. Incoming heat is redistributed vertically by LT, forming a warmer OSBL with a nearly uniform temperature. The inhibition of restratification is not reproduced by two common Reynolds-averaged Navier-Stokes equation models, highlighting the importance of properly representing sea-state dependent LT dynamics in OSBL models.