Kukulka Tobias

No Thumbnail Available
Last Name
Kukulka
First Name
Tobias
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Significance of Langmuir circulation in upper ocean mixing : comparison of observations and simulations
    (American Geophysical Union, 2009-05-28) Kukulka, Tobias ; Plueddemann, Albert J. ; Trowbridge, John H. ; Sullivan, Peter P.
    Representing upper ocean turbulence accurately in models remains a great challenge for improving weather and climate projections. Langmuir circulation (LC) is a turbulent process driven by wind and surface waves that plays a key role in transferring momentum, heat, and mass in the oceanic surface layer. We present a direct comparison between observations and large eddy simulations, based on the wave-averaged Navier-Stokes equation, of an LC growth event. The evolution of cross-wind velocity variance and spatial scales, as well as mixed layer deepening are only consistent with simulations if LC effects are included in the model. Our results offer a validation of the large eddy simulation approach to understanding LC dynamics, and demonstrate the importance of LC in ocean surface layer mixing.
  • Article
    Observations of turbulence in the ocean surface boundary layer : energetics and transport
    (American Meteorological Society, 2009-05) Gerbi, Gregory P. ; Trowbridge, John H. ; Terray, Eugene A. ; Plueddemann, Albert J. ; Kukulka, Tobias
    Observations of turbulent kinetic energy (TKE) dynamics in the ocean surface boundary layer are presented here and compared with results from previous observational, numerical, and analytic studies. As in previous studies, the dissipation rate of TKE is found to be higher in the wavy ocean surface boundary layer than it would be in a flow past a rigid boundary with similar stress and buoyancy forcing. Estimates of the terms in the turbulent kinetic energy equation indicate that, unlike in a flow past a rigid boundary, the dissipation rates cannot be balanced by local production terms, suggesting that the transport of TKE is important in the ocean surface boundary layer. A simple analytic model containing parameterizations of production, dissipation, and transport reproduces key features of the vertical profile of TKE, including enhancement near the surface. The effective turbulent diffusion coefficient for heat is larger than would be expected in a rigid-boundary boundary layer. This diffusion coefficient is predicted reasonably well by a model that contains the effects of shear production, buoyancy forcing, and transport of TKE (thought to be related to wave breaking). Neglect of buoyancy forcing or wave breaking in the parameterization results in poor predictions of turbulent diffusivity. Langmuir turbulence was detected concurrently with a fraction of the turbulence quantities reported here, but these times did not stand out as having significant differences from observations when Langmuir turbulence was not detected.